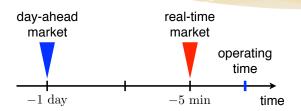


Risk-Limiting Dynamic Contracts for Direct Load Control

Insoon Yang, Duncan Callaway, Claire Tomlin

Department of Electrical Engineering and Computer Sciences Energy and Resources Group UC Berkeley, CA, USA

Time Line of Electricity Market Operation and Financial Risk



Day-ahead market: market-clearing prices & unit commitments

Supply = Forecasted demand

Real-time market (RM): balancing instantaneous demand

higher penetration of customers' solar & wind
 higher imbalance fee

Risk-Limiting Dynamic Contracts: Towards Financial Risk-Sharing on Demand Side

Key Idea: Direct load control + Contract

Contributions and Features of This Work

Contributions:

- Financial risk management solutions for electricity markets using direct load control
- Dynamic contracts with risk-limiting capability
- Solution method for mean-variance constrained-stochastic optimal control via dynamic programming

Features:

- Risk-limiting capability
- Scalability: decoupled optimal contract design
- Decentralized control + central monitoring

Risk-Limiting Dynamic Contracts

• Contract: $(C^i, \{u_t^i\}_{0 \le t \le T})$ (Note: they are schemes!)

- For customer *i* (Payoff: $J_i^A[C^i, u^i]$)
 - Participation payoff condition:

 $\mathbb{E}[J_i^A[C^i, u^i]] \geq \frac{b_i}{b_i}$

Risk-limiting condition (risk measure - variance):

 $\operatorname{Var}[J_i^{A}[C^i, u^i]] \leq S_i$

Mean and Variance can be independently adjusted!

Risk-Limiting Dynamic Contracts (continued)

► For utility (Payoff: J^P[C, u])

$$\max_{C,u} - \frac{1}{\theta} \log \mathbb{E} \left[\exp(-\theta J^{P}[C, u]) \right]$$

subject to $dx_{t}^{i} = f_{i}(x_{t}^{i}, u_{t}^{i})dt$ - load dynamics
 $\mathbb{E}[J_{i}^{A}[C^{i}, u^{i}]] \ge b_{i}$
 $\operatorname{Var}[J_{i}^{A}[C^{i}, u^{i}]] \le S_{i}, \quad i = 1, \cdots, n$

• Penalization of risk ($\theta > 0$: risk-averse decision making)

$$-\frac{1}{\theta}\log \mathbb{E}\left[\exp(-\theta J^{\mathcal{P}}[\mathcal{C}, u])\right] = \mathbb{E}[J^{\mathcal{P}}[\mathcal{C}, u]] - \frac{\theta}{2} \mathsf{Var}[J^{\mathcal{P}}[\mathcal{C}, u]] + O(\theta^{2})$$

High-Level Description of Proposed Solution Method

- The risk-limiting condition
 - = Conditions on the compensation and a new control variable γ_t^i
- Reformulation of the participation payoff condition: Introducing a new state yⁱ_t (customer's future expected payoff with a modified volatility)
- Reformulation of the risk-limiting condition: Introducing a new state zⁱ_t (remaining amount of risk that customer i can bear)
- Dynamic programming
 n decoupled three dimensional Hamilton-Jacobi-Bellman equations

(日) (同) (三) (三) (三) (○) (○)

Risk-Limiting Compensation

Theorem (Construction of compensation) Fix $u^i \in \mathbb{U}^i$ and $\gamma^i \in \Gamma^i$ such that

$$\mathbb{E}\left[\int_0^T (\gamma_t^i)^2 dt\right] \leq S_i.$$

The risk-limiting condition holds if and only if the end-time compensation, $C^i \in \mathbb{C}^i$, satisfies

$$C^{i} = \mathbb{E}[J^{A}_{i}[C^{i}, u^{i}]] - \int_{0}^{T} r^{A}_{i}(u^{i}_{t}, x^{i}_{t})dt + \int_{0}^{T} \gamma^{i}_{t}dW^{i}_{t}.$$

・ロット (雪) (日) (日) (日)

Risk-Limiting Dynamic Contract Design

Reformulation:

$$\max_{u,\gamma,\zeta} -\frac{1}{\theta} \log \mathbb{E} \left[\exp(-\theta \overline{J}^{P}[u,\gamma,\zeta]) \right]$$

subject to $dx_{t}^{i} = f_{i}(x_{t}^{i},u_{t}^{i})dt$
 $dy_{t}^{i} = -r_{i}^{A}(u_{t}^{i},x_{t}^{i})dt + (\gamma_{t}^{i} - \sigma_{i}^{A}(t) - \sigma_{i}(t))dW_{t}^{i}$
 $y_{0}^{i} = b_{i}$
 $dz_{t}^{i} = -(\gamma_{t}^{i})^{2}dt + \zeta_{t}^{i}dW_{t}^{i}$
 $z_{0}^{i} = S_{i}, \quad i = 1, \cdots, n$

> y_t^i : customer's future expected payoff with a modified volatility

> z_t^i : remaining amount of risk that agent can bear

Risk-Limiting Dynamic Contract Design (continued)

Theorem (Optimality)

Let (u^*, γ^*, ζ^*) be the solution to the reformulated problem. Define

$$C^{*i} := y_T^{*i} + \int_0^T \sigma_i(t) dW_t^i,$$

where W^i is the Brownian motion in the agent *i*'s energy consumption model. If for $i = 1, \dots, n$

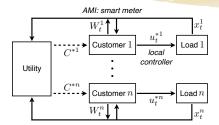
$$z_T^{*i} \ge 0,$$

then (C^*, u^*) is an optimal risk-limiting dynamic contact.

Remark:

- ► The problem can be decoupled for each agent: Scalability
- Solution method: dynamic programming

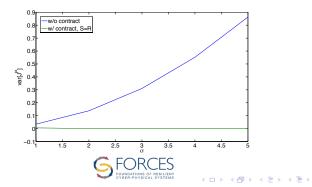
Practical Implementation: Decentralized Control + Central Monitoring



Minimum infrastructure required for TCL case:

- Smart meter (\$120)
- Thermostat (installed in TCL or \$25)
- Low-latency one-way data connection (Internet)
- Local controller in which the optimal control scheme in the contract is programmed

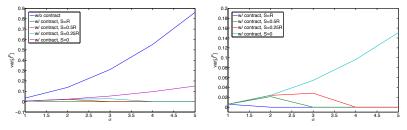
- R: customer's nominal risk (no contract case)
- Variance of utility's payoff vs volatility σ



э

Effect of the uncertainty (forecast inaccuracy)

- R: customer's nominal risk (no contract case)
- \blacktriangleright Variance of utility's payoff vs volatility σ



• $S \uparrow \Longrightarrow$ Risk management effectiveness \uparrow

Ongoing & Future Research Directions

Risk management solutions for electricity markets

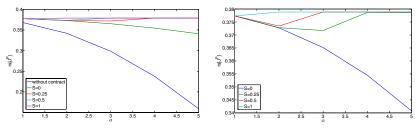
- Risk-limiting dynamic contracts for indirect load control
- Risk-limiting dispatch + Risk-limiting dynamic contracts
 - \Longrightarrow Ultimate risk management solution for electric grid

 Scalable combinatorial optimization for control of interacting loads (with Sam Burden, Ram Rajagopal, Shankar Sastry, Claire Tomlin)

- Guaranteed suboptimality bound
- Noncooperative aggregators
- Scalability of implicit sampling in stochastic optimal control (with Matthias Morzfeld, Claire Tomlin, Alexandre Chorin)

Effect of the uncertainty (forecast inaccuracy)

 \blacktriangleright Risk-sensitive function of utility's payoff vs volatility σ



• $S \uparrow \Longrightarrow$ Risk sensitive function of utility's payoff \uparrow

Very effective under high penetration of renewables

