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Motivation

I The electrical power drawn by plug-in electric vehicle (PEV) chargers will
(eventually?) begin to impact the grid.

I At the system-wide level, control objectives tend to focus on filling the
overnight valley in background demand.

I At the distribution level, proposed control strategies address:
I Transformer overloads
I Loss minimization
I Voltage degradation
I Tap-change minimization

I Few control strategies also take into account the effects of charging on
battery health.



Goals

I A decentralized approach to scheduling PEV charging that considers
trade-offs between:

I Energy price
I Battery degradation
I Distribution network effects

I The resulting collection of PEV charging strategies should be efficient
(socially optimal).

I Convergence should only require a few iterations.



Formulation

I PEV population: N ≡ {1, ...,N}.
I Horizon: T ≡ {0, ...,T − 1}.
I Admissible charging strategies:

unt ≥ 0, t ∈ T

‖un‖1 ≡
∑
t∈T

unt ≤ Γn

where Γn is the energy capacity of the n-th PEV.

I The set of admissible charging controls is denoted Un.



Demand charge

I Distribution-level impacts are largely a consequence of coincident high
charger power demand unt .

I Undesirable effects can be minimized by encouraging lower power levels,

Costdemand,nt = gdemand,nt(unt)

where gdemand,nt(·) is a strictly increasing function.



Battery degradation cost

Experimentation with LiFePO4 lithium-ion batteries gave a degradation model:

dcell(I ,V ) = β1 + β2I + β3V + β4I
2 + β5V

2 + β6IV + β7V
3

relating energy capacity loss per second (in Amp×Hour×Sec−1) to charging
current I and voltage V .

I Degradation cost:

gcell(I ,V ) = Pcell∆TV dcell(I ,V )

where Pcell is the price ($/Wh) of battery cell capacity.

I Over the useable state of charge (SoC) range, V ≈ Vnom.

I Battery degradation cost can be expressed as:

Costdegrad,nt = gcell,n(unt) = Mngcell(
103unt
MnVnom

,Vnom)

= anu
2
nt + bnunt + cn



Centralized formulation

System cost:

J(u) ,
∑
t∈T

{
c
(
dt +

∑
n∈N

unt
)

+
∑
n∈N

gnt(unt)

}
−
∑
n∈N

{
hn (‖un‖1)

}
where:

I un ∈ Un for all n ∈ N .

I c(·) gives the generation cost with respect to the total demand
dt +

∑
n∈N unt , and dt denotes the aggregate inelastic base demand at

time t.

I gnt(unt) = gdemand,nt(unt) + gcell,n(unt) captures the demand charge and
battery degradation cost of the n-th PEV.

I hn (‖un‖1) denotes the benefit function of the n-th PEV with respect to
the total energy delivered over the charging horizon, with:

hn (‖un‖1) = −δn(‖un‖1 − Γn)2



Example
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Example - varying Pcell
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Example - varying terminal penalty, δn

Total demand Delivered energy
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Decentralized charging coordination

(S1) Each PEV autonomously determines its optimal charging strategy with
respect to a given electricity price profile p ≡ (pt , t ∈ T ). This optimal
strategy takes into account the trade-off between the electricity cost and
local (demand and battery degradation) costs over the entire charging
horizon.

(S2) The electricity price profile p is updated to reflect the latest charging
strategies determined by the PEV population in (S1).

(S3) Steps (S1) and (S2) are repeated until the change in the price profile at
(S2) is negligible.

Using an appropriate individual cost function and price update mechanism,
(S1)-(S3) is convergent and achieves the socially optimal (centralized) solution.



Individual cost function

Jn(un; p) ,
∑
t∈T

{
ptunt + gnt(unt)

}
− hn

(∑
t∈T

unt
)

I Cost is composed of energy cost, local (demand and battery degradation)
cost, and the benefit derived from the total delivered energy.

I The optimal charging strategy of the n-th PEV, with respect to p:

u∗n (p) = argmin
un∈Un

Jn(un; p)

I This optimal response has the form:

unt(p,An) = max
{

0, [g ′nt ]
−1(An − pt)

}
, t ∈ T

for some An, where g ′nt is the derivative of gnt , and [g ′nt ]
−1 denotes the

corresponding inverse function.



Price profile update mechanism

I Let
p+
t (p) = pt + η

(
c ′
(
dt +

∑
n∈N

u∗nt(p)
)
− pt

)
, t ∈ T

where η > 0 is a fixed parameter, and u∗n (p) is the optimal charging
strategy for the n-th PEV with respect to p.

I Assuming the terminal valuation function hn is increasing and strictly
concave:

‖u∗n (p)− u∗n (%)‖1 ≤ 2ν‖p − %‖1

Theorem: The decentralized algorithm converges to the efficient (centralized)
solution u∗∗.

I The proof establishes that

‖p+ − %+‖1 < ‖p − %‖1

so the price update operator p+(p) is a contraction map.



Illustration - convergence

Evolution of ‖p(k) − p∗∗‖1 for various values of the price update parameter η.

I Convergence is guaranteed for 0 < η < 1.017.
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Illustration - algorithm updates

Price update parameter η = 1.
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Ensemble control of hysteretic loads

I Example: thermostatically controlled loads.
I State-space modelling results in a nonlinear hybrid dynamical system.

I Nonlinear because states and inputs multiple together.
I Hybrid due to the influence of rapidly changing inputs.
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Conclusions

I Responsive load control offers an effective approach to compensating for
the variability inherent in large-scale renewable generation and mitigating
the effects of unplanned generation and transmission outages.

I Expansive communications networks and advances in distributed control
algorithms facilitate precise, non-disruptive forms of load control.

I Numerous challenges remain though:
I Highly distributed, heterogeneous, uncertain resources.
I Control structure, nonlinearity, latency, inter-operability.
I Data security.
I Modelling and analysis.
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