Design Principles for Privacy in the Internet of Things

Roy Dong University of California, Berkeley

Shaunak D. Bopardikar United Technologies Research Center

Helsinki Privacy Experiment

- 10 households (12 individuals) monitored over 6 months.
- 3-5 video cameras with microphones, computer keylogging and screenshots, wireless and wired network, smartphone, TV and DVD, customer loyalty cards.

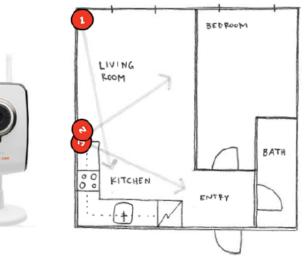


Figure 2. The Wi-Fi camera and an example positioning. The plan was redrawn from a subject's original.

[Long-term Effects of Ubiquitous Surveillance in the Home (2012)]

Helsinki Privacy Experiment

Results:

- Habituation
- All but 1 participant showed privacy-seeking behavior: ceasing a behavior entirely, hiding things, acting privately, manipulating sensors. Known as the chilling effect.

[Long-term Effects of Ubiquitous Surveillance in the Home (2012)]

Outline

Privacy

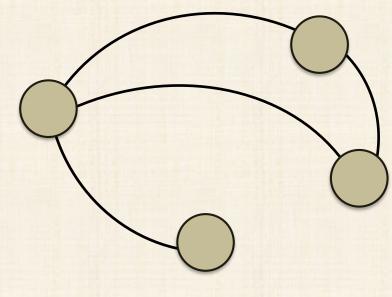
- What's at stake?
- Privacy by Design
 - Passive privacy analysis
 - Active privacy mechanisms
 - Optimal privacy design
- Industrial Need for Privacy-Preserving Mechanisms

Passive privacy analysis

- For a fixed system, quantify the privacy risk of users.

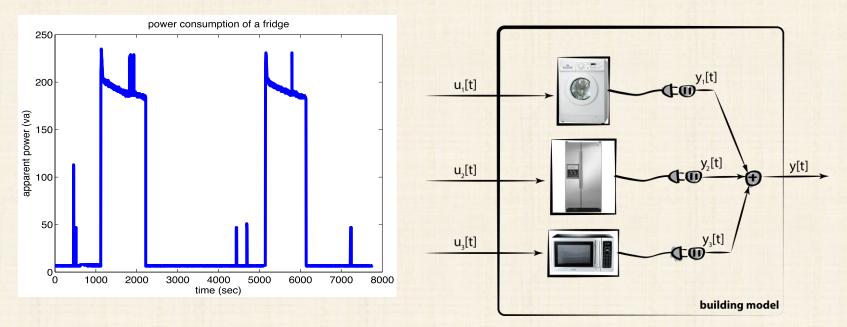
Passive privacy analysis

- RD, Krichene, Bayen, Sastry, "Differential Privacy of Populations in Routing Games" (2015)
 - Given traffic infrastructure, learning dynamics, and a noise model, calculate the level of differential privacy.



Passive privacy analysis

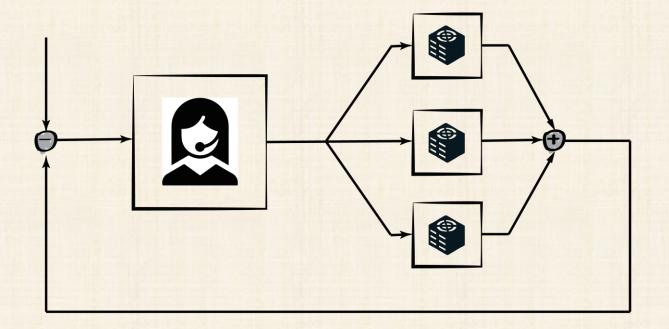
- **RD**, Ratliff, Ohlsson, Sastry, "Fundamental Limits of Nonintrusive Load Monitoring" (2014)
 - Given device dynamics, quantify inherent uncertainty in energy disaggregation problem.



- Active privacy mechanisms
 - Fix a parameterized privacy-preserving scheme.
 - Pick the privacy parameter to best trade-off the utility of the collected data with the privacy of users.

Active privacy mechanisms

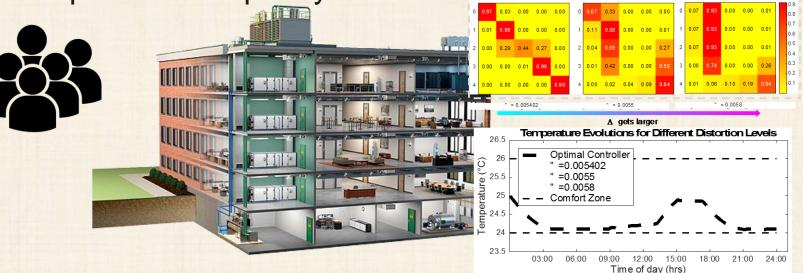
- **RD**, Cárdenas, Ratliff, Ohlsson, Sastry, "Quantifying the Utility-Privacy Tradeoff in the Internet of Things," (under review)
 - Pick a sampling frequency to tradeoff direct load control performance and user privacy.



- Optimal privacy design
 - Fix performance metrics and privacy metrics.
 - Design a privacy-preserving mechanism that maximizes privacy, subject to performance constraints.

Optimal privacy design

- Jia, RD, Sastry, Spanos, , Ratliff, Ohlsson, Sastry, "Privacy-Enhanced Architecture for Occupancy-based HVAC Control," (under review)



- Passive privacy analysis
- Active privacy mechanisms
- Optimal privacy design

Privacy-Awareness in Applications

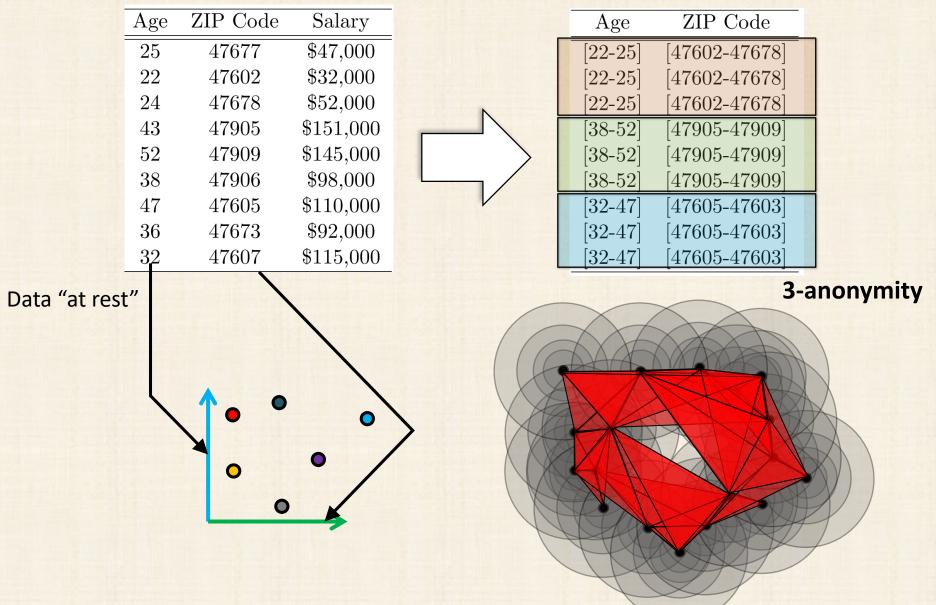
Companies collect data from customers to recommend maintenance schedules

- Multiple customers sharing their data (mix of public and private/proprietary)
- Access to "private" data would often lead to improved analytics
- Insight into customer perspective toward privacy

Other related examples:

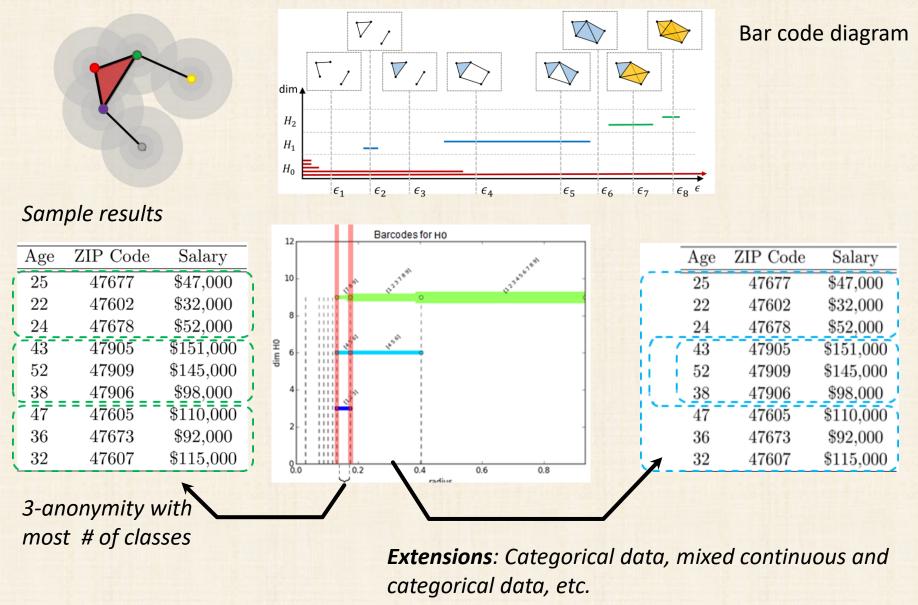
- Automotive and Auto-insurance companies (Ref: NY times, Aug 15, 2014)
- Authentication based on gait (DHS CASTRA project, PI: Dr. Manikantan Shila, UTRC)

UTRC's Algebraic Topological Perspective to Privacy



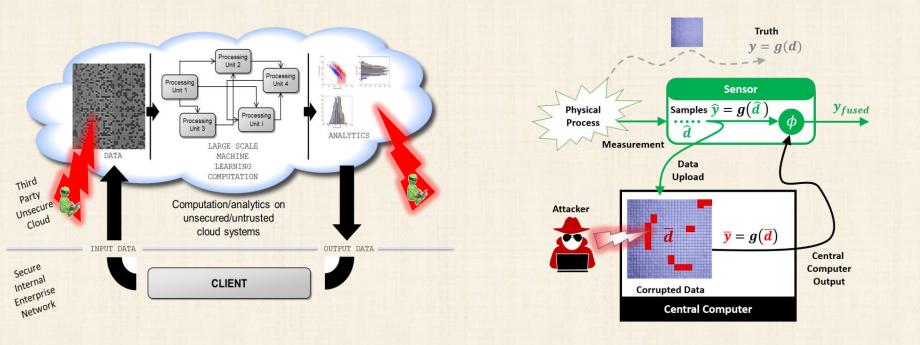
A. Speranzon and S. D. Bopardikar, "An Algebraic Topological perspective to Privacy", American Control Conference, 2016.

UTRC's Algebraic Topological Perspective to Privacy



A. Speranzon and S. D. Bopardikar, "An Algebraic Topological perspective to Privacy", American Control Conference, 2016.

Trusted Computation



- **Our approach**: Problem from Trusted Computation + Mathematics from *Adversarial Machine Learning*
- Game-theoretic (iterative) methods to produce a fusion solution that requires low complexity
- Theoretical conditions on convergence [Bopardikar et al, ACC 2015 and Automatica 2017]
- Open directions: joint privacy of data and security of computation, distributed repetitive games

Prototypical (Abstract) problem

- Compute y = F(x, p)
 - x: public variables
 - -p: private variables (or functions)
 - *F*: algorithm/code which could be partly private
 - Subroutines could be proprietary
 - y: useful output for a legitimate/honest user
- Goal: prevent reverse engineering of p, F
- Features:
 - Accuracy is very important!
 - Protection against *multiple runs* of the code
 - Probabilities are *not provided* as specifications!

Conclusion – Takeaways, Gaps

- Privacy problems often solved through contracts
 - Binary (opt in/out)
 - Protect confidentiality
- Privacy metrics need to be more visual/psychological
 - Very little intuition behind value of ϵ in differential privacy
 - How do we verify privacy guarantees?
- Privacy interlinks/conflicts with security in many scenarios
 - Cyber tools are necessary, but not sufficient
 - Security problem can be difficult under privacy constraints
- Current trends toward video-streams
 - Computer vision, data analytics, dynamical systems