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Helsinki Privacy Experiment

• 10 households (12 individuals) monitored over 6 

months.

• 3-5 video cameras with microphones, computer 

keylogging and screenshots, wireless and wired 

network, smartphone, TV and DVD, customer 

loyalty cards.

2[Long-term Effects of Ubiquitous Surveillance in the Home (2012)]



Helsinki Privacy Experiment

• Results:

– Habituation

– All but 1 participant showed privacy-seeking behavior: 

ceasing a behavior entirely, hiding things, acting 

privately, manipulating sensors. Known as the 

chilling effect.
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Outline

• Privacy

– What’s at stake?

• Privacy by Design

– Passive privacy analysis

– Active privacy mechanisms

– Optimal privacy design

• Industrial Need for Privacy-Preserving 

Mechanisms
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Privacy by Design

• Passive privacy analysis

– For a fixed system, quantify the privacy risk of users.
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Privacy by Design

• Passive privacy analysis

Example:

• RD, Krichene, Bayen, Sastry, “Differential Privacy of Populations in 

Routing Games” (2015)

– Given traffic infrastructure, learning dynamics, and a 

noise model, calculate the level of differential privacy.
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Privacy by Design

• Passive privacy analysis

Example:

• RD, Ratliff, Ohlsson, Sastry, “Fundamental Limits of Nonintrusive 

Load Monitoring” (2014)

– Given device dynamics, quantify inherent uncertainty 

in energy disaggregation problem.
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Privacy by Design

• Active privacy mechanisms

– Fix a parameterized privacy-preserving scheme.

– Pick the privacy parameter to best trade-off the utility 

of the collected data with the privacy of users.

8



Privacy by Design

• Active privacy mechanisms

Example:

• RD, Cárdenas, Ratliff, Ohlsson, Sastry, “Quantifying the Utility-

Privacy Tradeoff in the Internet of Things,” (under review)

– Pick a sampling frequency to tradeoff direct load 

control performance and user privacy.
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Privacy by Design

• Optimal privacy design

– Fix performance metrics and privacy metrics.

– Design a privacy-preserving mechanism that 

maximizes privacy, subject to performance 

constraints.
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Privacy by Design

• Optimal privacy design

Example:

• Jia, RD, Sastry, Spanos, , Ratliff, Ohlsson, Sastry, “Privacy-

Enhanced Architecture for Occupancy-based HVAC Control,” (under 

review)

– Minimize mutual information between individual 

traces and reported data, while still providing 

improved occupancy-based HVAC control.
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Privacy by Design

• Passive privacy analysis

• Active privacy mechanisms

• Optimal privacy design
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Privacy-Awareness in Applications 

• Aerospace: 

From Customer Data to:

– Mission History?

– Operator Usage?

UTC Enterprise 

Pratt and Whitney

• Commercial: 

From Customer Data to:

– User preferences?

– Occupancy patterns?

Companies collect data from customers to recommend maintenance schedules

Other related examples:
• Automotive and Auto-insurance companies (Ref: NY times, Aug 15, 2014)
• Authentication  based on gait (DHS CASTRA project, PI: Dr. Manikantan Shila, UTRC) 

Lenel (Access Control)

• Multiple customers sharing their data (mix of public and private/proprietary)
• Access to “private” data would often lead to improved analytics
• Insight into customer perspective toward privacy



UTRC’s Algebraic Topological Perspective to Privacy
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3-anonymity

A. Speranzon and S. D. Bopardikar, “An Algebraic Topological perspective to Privacy”, American Control Conference, 2016.

Data “at rest”
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UTRC’s Algebraic Topological Perspective to Privacy

Bar code diagram

Sample results

3-anonymity with 
most  # of classes

A. Speranzon and S. D. Bopardikar, “An Algebraic Topological perspective to Privacy”, American Control Conference, 2016.

Extensions: Categorical data, mixed continuous and 
categorical data, etc.



Trusted Computation 
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 Our approach: Problem from Trusted Computation + Mathematics from Adversarial Machine Learning
 Game-theoretic (iterative) methods to produce a fusion solution that requires low complexity
 Theoretical conditions on convergence [Bopardikar et al, ACC 2015 and Automatica 2017]

 Open directions: joint privacy  of data and security of computation, distributed repetitive games



Prototypical (Abstract) problem

• Compute 𝑦 = 𝐹(𝑥, 𝑝)
– 𝑥: public variables

– 𝑝: private variables (or functions)

– 𝐹: algorithm/code which could be partly private
• Subroutines could be proprietary

– 𝑦: useful output for a legitimate/honest user

• Goal: prevent reverse engineering of 𝑝, 𝐹

• Features:
– Accuracy is very important!

– Protection against multiple runs of the code

– Probabilities are not provided as specifications!
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Conclusion – Takeaways, Gaps

• Privacy problems often solved through contracts
– Binary (opt in/out)

– Protect confidentiality

• Privacy metrics need to be more visual/psychological
– Very little intuition behind value of 𝜖 in differential privacy

– How do we verify privacy guarantees?

• Privacy interlinks/conflicts with security in many scenarios
– Cyber tools are necessary, but not sufficient

– Security problem can be difficult under privacy constraints

• Current trends toward video-streams
– Computer vision, data analytics, dynamical systems
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