# Anthropomorphic Robotic Ankle Prosthesis with Programmable Materials

NRI: INT: COLLAB: Anthropomorphic Robotic Ankle Prosthesis with Programmable Materials/Award #1830460 (1921046, 2025797), 2018. Poster #xx

PI: Mo Rastgaar (Purdue), co-PI: Panagiotis Artemiadis (UD), Sub-Contr.: Conor Walsh (Harvard), Ken Kaufman (Mayo Clinic)

## Challenge

To decouple the torque control of the ankle from the impedance modulation, and potentially add versatility to robotic ankle-foot prostheses

### Solution

To consolidate the impedance control of the ankle robot to a mechanical module, capable of following the time-varying 2-D mechanical impedance of ankle



Scientific Impact

- To explore the adaptive dynamic behavior of the human ankle during gait in arbitrary directions
- To incorporate anthropomorphic considerations in real-time control of assistive robots

## **Broader Impact**

- Improved well-being and activities of daily living for amputees
- Engaging k-12 to graduate students in research, education, and outreach

Thrust 1: Estimate ankle impedance during the stance phase in different gait scenarios and implement in the design and control of a 2-DOF prosthesis. Pl: Mo Rastgaar, Purdue University

### 2-DOF perturbation platform

- Subject can stand, walk straight, or turn
- Actuate the platform with PRBS or step perturbations

#### Measurements

- Track pose of force plate, foot, and shank with motion capture system
- Ground reaction force and moment

#### **Post-Calculations**

- Eliminate dynamics of the platform
- Ankle angle,  $\theta$ , and external torque around the ankle,  $\tau$



Thrust 2: Equip an existing 2-D ankle-foot prosthesis with a controllable ankle impedance module built out of programmable material Sub-contr. Conor Walsh (Harvard)

### **Ankle Impedance Module**

#### Goals:

- Standalone 2 DOF impedance module that can operate in parallel to cable-based actuation of existing prosthesis
- Modulate impedance throughout the gait cycle to emulate the biological impedance of the ankle
- Leverage inherent compliance of soft actuators to reduce control complexity

#### First step:

 1DOF impedance module with unfoldin textile-based inflatable actuators to validate design approach





Constant pressure angle sweep (Actuator 1)





Thrust 3: Analyze the performance of the ankle-foot prosthesis with controllable impedance on scenarios that simulate real-world activities in dynamic environments Co-PI: Panagiotis Artemiadis (University of Delaware)

#### Goals:

- Analyze and model muscle responses to walking surface transitions
- Investigate the effect of visual anticipation of transition to muscle and kinematics





The Variable Stiffness Treadmill (VST): a tool of investigation of gait under walking surface stiffness perturbations

Thrust 3: Analyze the performance of the ankle-foot prosthesis with controllable impedance on scenarios that simulate real-world activities in dynamic environments Co-PI: Panagiotis Artemiadis (University of Delaware)

#### Main results:

- Increased TA activity for VO and VP conditions from 63-75%
- Increased TA activity is also present during the encounter of the visual sand patch from 105-125% for VO and VP conditions when the subject begins foot contact in the VR environment
- Delayed GA muscle activation for the VO condition compared to normal walking

