

NRI: FND: Customizable, Haptic Co-Robot for Training Emergency Surgical Procedures

Ann Majewicz Fey¹, Edoardo Battaglia², Caroline Park³

¹ Mechanical Engineering, University of Texas at Austin ² Mechanical Engineering, University of Utah ³ Surgery, UT Southwestern Medical Center NSF# 2102250 Award Date: 10/1/2020

Challenges in Training Trauma Surgical Skills

Needle Decompression

Chest Tube Placement

- Requires excellent spatial coordination
- Correct tool placement depends on sense of touch
- Emergent nature of trauma limits time for training

Long-Term Goal: Augment Mentored Complex Skill Acquisition through Shared Haptic Guidance

Specific Aims:

- 1) Kinematic and Kinetic Sensing for Trainee-Patient Interactions
- 2) Intuitive Haptic Guidance for Tool Manipulation by Trainees
- 3) Evaluate Effectiveness of Haptic Co-Robotic Training

(a) Haptic Telementoring for Needle Insertion

(a) Percutaneous Needle Insertion

(b) Chest Tube Placement

3

Aim 1: Kinematic and Kinetic Sensing for Trainee-Patient Interactions

Scientific Objective #1:

Develop Analytical Techniques to Minimize Necessary Sensors (ISMR 2022)

Long-Term Goal #1: Simple, Unobtrusive Sensing System

Reconstructing Hand Pose with Under-sensed Hand (Submitted Conference Paper)

Open-Source Hand Visualizer for CHAI3D Haptics Library (Haptics WIP 2020)

https://github.com/ebattaglia/cHand/

Aim 1: Kinematic and Kinetic Sensing for Trainee-Patient Interactions

Scientific Objective #2:

Understanding Mentor Perception of Trainee Forces (HAPTICS 2022) Long-Term Goal #2: Intuitive Visuohaptic Telementoring System with Shared Haptics

Aim 1: Kinematic and Kinetic Sensing for

Trainee-Patient Interactions

Scientific Objective #2:

Understanding Mentor Perception of Trainee Forces (HAPTICS 2022)

Long-Term Goal #2: Intuitive Visuohaptic Telementoring System with Shared Haptics

Aim 2: In

idance Cues

for Tool Manipulation

Scientific Objective:

Finding intuitive and natural vibrotactile cues for 3D tool motion (*submitted*)

Cartesian Space cues had highest accuracy and lowest workload.

Next Steps: Integration and Evaluation of Mentor-Trainee System for Aim 3 ⁷

Tool Space

