

# FORCES Overview and Update

### Larry Rohrbough, UC Berkeley Saurabh Amin, MIT











### Importance of Cyber-Infrastructures

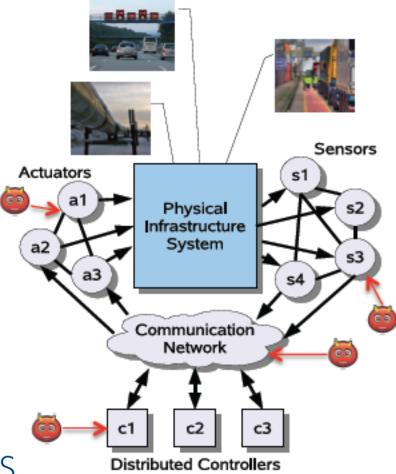
- \* E-Commerce, Banking, Finance\* Including move to mobile platforms
- \* Physical Infrastructures
  - Water, power, telecommunications
- \* Healthcare
  - Medical records, IT infrastructure
- \* Other Critical Infrastructures...
  - Transportation, agriculture, security



Most are Cyber-Physical Systems (CPS): Computation, Control, Timing, Actuation



### **Key Drivers for Resilient CPS**

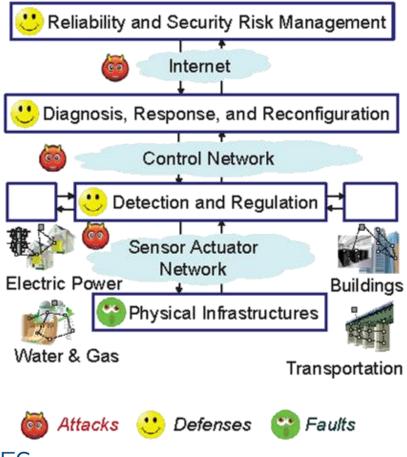

### Attributes of Resilience

- Functional correctness (by design)
- Robustness to reliability failures (faults)
- Survivability against security failures (attacks)

### \* Challenges to Resilience

- \* Spatio-temporal dynamics
- Many strategic interactions with network interdependencies
- Inherent uncertainties (public & private)
- Tightly coupled control and economic incentives






### **FORCES Research Focus for CPS**

#### \* Resilient Control

- \* Threat assessment & detection
- Fault-tolerant & attack diagnostics
- Real-time predictive response
- Model-based design
- Economic Incentives
  - Incentive (game) theory for resilience
  - Mechanism design
  - \* Interdependent risk assessment
  - \* Insurance & risk distribution





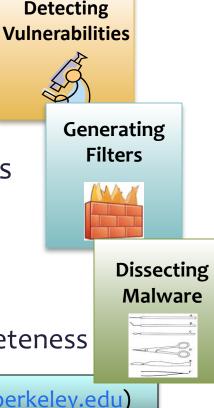
### System Software Security

#### Sophisticated malware targets various CPS...



#### Current CPS often run legacy code

- CPS focus on safety, protecting against failures
- CPS software often does not protect against security attacks
- Protocols often lack security, authentication, or privacy
  - Attacker can extract or control information and computation




### BitBlaze for Software Security

- \* Analysis locates weaknesses in code
  - \* Allow a mix of binary only and source code
- \* Targeted patching of specific vulnerabilities
  - Mitigates a specific vulnerability
- \* Binary hardening: enforce general security policies
  - Protect against broad classes of vulnerabilities
  - \* Detect general attack and forces failsafe action
  - Protect control-flow and important data of devices
  - \* Look for low overhead, binary compatibility, completeness

#### BitBlaze Binary Analysis Infrastructure (http://bitblaze.cs.berkeley.edu)





### **FORCES Education Activities**

#### \* Teaching and Training

- New and enhanced courses that introduce concepts of resilient control and economic incentives:
  - Michigan (Hiskins)
  - \* MIT (Amin/Balakrishnan)
  - \* Vanderbilt (Sztipanovits)
- \* Looking for commonality across the courses we teach.
- Developing an integration plan for online modules.
- \* Young Researcher Advancement
  - Expanding opportunities for institutional exchange. Already exchanges between Berkeley-Michigan-MIT.
  - Engaging with students about other professional development.



### FORCES Education Activities (cont.)

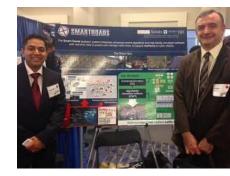
- \* Undergraduate Research
  - Supporting undergraduate research in labs during the year and in the summer.
  - \* Examples in 2014
    - \* Berkeley: Chaitanya Aluru
      - \* Economic incentives and game theory
    - \* MIT: David Ogutu
      - \* Analytics-driven platform for CPS trustworthiness







### **FORCES Outreach Activities**

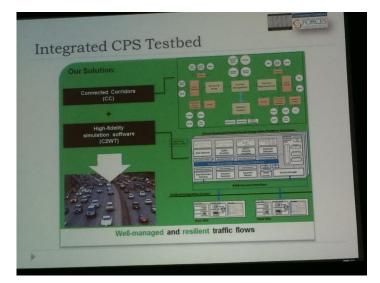

#### Conferences

- CPSWeek 2014: Invited Keynote by Sastry "Towards a Theory of Resilient Cyber Physical Systems."
- \* HiCoNS: Steering Committee, General Chairs, Program Chairs. Invited session "On Improving CPS Resilience by Integrating Robust Control and Theory of Incentives."
- \* ICCPS: Program Chair. Special panel on "CPS Security."
- \* Workshops
  - Amin & Balarkishnan proposal to IEEE CDC 2014 on Resilient Control of CPS.
  - \* Amin and Schwartz organizing a summer school Cyber-Physical Security at Institute for Pure & Applied Mathematics (IAPM) in Summer 2015.



### FORCES Outreach Activities (cont.)

- SmartAmerica Challenge
  - Berkeley/Vanderbilt project on resilient transportation networks, impacts of cyber attacks.
  - Integrated demonstration June 11 in Washington, DC.
  - \* More on this tomorrow...
















# **FORCES** Integration

#### Saurabh Amin, MIT











### Integration plans

- \* Societal component is the most important aspect of FORCES, in particular the integration of technology (RC) & Economics (EI)
  - Unconventional ideas, out-of-the-box solutions
  - Concrete plans and efforts
- \* Build on prior strengths (and not forget them!)
  - \* Existing testbeds, tools, case studies and their FORCES extensions
- \* Foster and sustain collaboration with industry
  - Testbeds: simulators and platforms
  - Data and use cases / case studies



### Integration efforts

|                                          | RC                       |                              |                           |                           | El                        |                                          |                       |                  |
|------------------------------------------|--------------------------|------------------------------|---------------------------|---------------------------|---------------------------|------------------------------------------|-----------------------|------------------|
|                                          | Diagn<br>ostics<br>(F&A) | Robust/<br>Stoch.<br>control | Model-<br>based<br>design | Secure<br>design/<br>ops. | Game<br>theory            | Mecha<br>nism<br>design                  | CPS<br>risks<br>mgmt. | Human<br>in loop |
| Road<br>(on/side)                        |                          |                              |                           |                           | Year                      |                                          |                       |                  |
| Air<br>(space/port)                      |                          |                              |                           |                           | Year 1 to<br>Using result | Years                                    |                       |                  |
| Electricity<br>(trans/dist)              |                          |                              |                           |                           |                           | S OF TYZ                                 |                       |                  |
| Energy<br>(Ren./hybrid)                  |                          |                              |                           | $\checkmark$              |                           |                                          |                       |                  |
| CPS Sec.<br>(Reliability/Res<br>ilience) |                          |                              |                           |                           | Year 2 t<br>Joint wit     | o <sub>Year 3</sub><br>th <sub>abc</sub> |                       |                  |
| Codesign                                 |                          |                              |                           |                           |                           |                                          |                       |                  |



### Measures of success

- \* Short-term goals that can lead us to success:
  - New models, analysis, design results on RC+EI
  - Novel abstractions and understanding of h-CPS
  - \* Surprising / counterintuitive results, Aha moments,...
  - \* Resilient algorithms, better guarantees

- \* Validation of applicability to one or more FORCES domains
- \* New data sets, prototypes, code, design tool,..
- Demos on traditional/new CPS platforms
- \* Adoption of concepts / tools, direct relevance/ use by industry



## Highlights

- \* Smart America Challenge:
  - FORCES integration of Mobile Millennium and ISIS
- \* Industry collaboration:
  - \* Knowledge transfer session by Speranzon (UTRC), Ohlsson & Ratliff (UCB)
- \* Education efforts:
  - Young researcher talks
  - Course modules, UROPs, conference workshops
- \* Team efforts:
  - \* Active collaborations between students and faculty of four campuses
  - \* First set of papers out!
- \* Big picture discussions:
  - Illustrations and case studies
  - Informal conversations



## Moving forward

- \* Proactive participation in team-wide FORCES meetings
  - Explicit discussion about integration efforts and plans
  - \* "So what?" questions, next steps, and limitations!
- \* FORCES website and CPS-VO
  - \* Post publications, video, data sets, code
  - Quarterly revisions to the website, highlights, news
  - \* Communicate updates to NSF PMs, IABs, broader CPS community
- \* Representing the team in meetings, workshops
  - \* Participation at CPSWeek, CPS PI meetings, NSF workshops
  - Proposed workshops at IEEE CDC
  - \* Invited lectures at major conferences
- \* In progress:
  - \* New benchmark problems, comparison of techniques, data sharing
  - \* Short-term visits, touch-base between FORCES gatherings

