Foundations Of Resilient CybEr-physical Systems (FORCES)

Shankar Sastry¹, Saurabh Amin², Hamsa Balakrishnan², Alexandre Bayen¹, Ian Hiskens³, Gabor Karsai⁴, Xenofon Koutsoukos⁴, Asuman Ozdaglar², Galina Schwartz¹, Dawn Song¹, Janos Sztipanovits⁴, Claire Tomlin¹, Demosthenis Teneketzis³

> ¹University of California, Berkeley ²Massachusetts Institute of Technology ³University of Michigan, Ann Arbor ⁴Vanderbilt University

NSF FORCES Kickoff, April 12th, 2013

Motivation: Resilient CPS

Attributes

- 1 Functional correctness by design
- 2 Robustness to reliability failures (faults)
- **3** Survivability against security failures (attacks)

Tools [Traditionally disjoint]

- Resilient Control (RC) over sensor-actuator networks
- Economic Incentives (EI) to influence strategic interaction of individuals within systemic societal institutions

CPS integrated with human decision makers [Tightly coupled RC & EI]

- Spatio-temporal and hybrid dynamics
- Large number of strategic interactions with network interdependencies
- Inherent uncertainties, both public and private

Towards a theory of Resilient CPS

Resilient Control (RC)

- Threat assessment & detection
- Fault-tolerant networked control
- Real-time / predictive response
- Fundamental limits of defenses

Economic Incentives (EI)

- Incentive Theory for resilience
- Mechanisms to align Nash allocations with socially optima
- Interdependent risk assessment
- Insurance & risk redistribution

El-aware RC design

Attack model

- Learn CPS parameters
- Unauthorized access
- DoS / Deception
- Max damage / gain yet evade detection

RC design problem

Max performance subject to

- Security levels & control modalities
- CPS dynamics
- Safety constraints
- Attack / fault hypotheses

Sastry, et al. (UCB, MIT, UMich, VU)

RC-aware El design

El for CPS security & reliability

- Network externalities
- Mechanisms design: implement in NE/BNE the social welfare maximizing correspondences

Sastry, et al. (UCB, MIT, UMich, VU)

RC+EI: Multi-layer integrated design

Network Games: externalities, investment incentives, residual risk

- Players: Attacker(s), Defenders (CPS owners / Government)
- Failure models: Random, Strategic, Correlated, Byzantine
- Network topologies: Transportation, Electricity T&D, Buildings

Stochastic Control: learning, minimax control, performance benchmark

- Players: Regulators, System operators, CPS managers
- Public uncertainties: Joint distribution of reliability failures (natural events) and security failures (strategic network attacks)
- Control design: Anomaly / intrusion detection, Safety-preserving (switching) control, Supervisory response (reconfiguration / rerouting)

Incentive theory: Mechanism design, mean-field games (static & dynamic)

- Players: Distributors, Large population of travelers / consumers
- Private uncertainties: Individual utilities, asymmetric information
- Mechanisms: Public good provision, Demand response / Pricing

Validation approach

CPS control-security co-experimentation & co-design

Co-experimentation

Co-design

Electricity Transmission and Distribution (T&D)

Wide-area control & Demand response (DR)

- Data: NASPInet (PMUs), NESCOR, IEC & IEEE models, power system simulators
- RC tools: distributed load control, load aggregation (mean-field), balancing (esp. renewables), PHEV charging
- El tools: DR pricing schemes, T&D regulation, ↓ (non-)technical losses

Regulated electricity distribution

Distributed load control

Smart meters and utility networks

Building energy management & DR incentives

- Data: Utility pricing, building operations and loads, consumption patterns
- RC tools: Data fusion, model estimation, integrating occupancy, price, & weather predictions, model-predictive control
- El tools: Residential DR, AMI security & privacy, ↓ electricity theft/non-payment

Attacks to AMIs 04/12/2013 FORCES Kickoff

10 / 14

Road Traffic Operations

Mobile Millennium System

- Industry grade platform
- 60 million data points/day
- Tools: Data fusion & consistency, privacy preserving sampling, nowcast, routing, operational control, traveler incentive design
- Real security & reliability scenarios

Traffic data sources

Air Traffic Operations

National Airspace System

- Data: Airport operations, aircraft trajectories, aviation weather
- Airport: Algorithms for ATC choice modeling, scheduling, congestion control, and resource re-allocation
- Airspace: Methods for surveillance (conformance monitoring, threat detection), sectorization, re-routing

NextGen security & reliability

Centralized

Control

Centralized

Communication

Varying degrees of EI+RC integration for air traffic control and comm. systems

Sastry, et al. (UCB, MIT, UMich, VU)

Airport

Integration among individual researchers

Choice of Projects and Coordination

- Monthly Coordination Telcons:
 - RC + El integration for power systems (GS and IM), visitor Catherine Rosenberg (Waterloo), air transportation Systems (HB) so far
 - Game Theory advances (SA) so far
 - CPS VO and inter-agency coordination (XK, JS, SS)
- Exchange of Students and Research Staff
 - Student of HB from MIT have spent time at Berkeley
 - GS has spent time at MIT with AO and SA
- HiCONS and RCSS Conferences
 - LR and Linda Bushnell (Washington) co-PC chairs for HiCONS, CPS Week, Philadelphia 2013, XK for 2014?
 - LR will host RCSS in August 2013 in San Francisco
- Industry Coordination

JS and SS will work with industry partners (UTRC, Honeywell, GE) to develop FORCES industrial advisory board.