Foundations Of Resilient CybEr-physical Systems (FORCES)

Shankar Sastry 1 , Saurabh Amin 2 , Hamsa Balakrishnan 2 , Alexandre Bayen¹, Ian Hiskens³, Gabor Karsai⁴, Xenofon Koutsoukos⁴, Asuman Ozdaglar², Galina Schwartz 1 , Dawn Song 1 , Janos Sztipanovits 4 , Claire Tomlin 1 , Demosthenis Teneketzis 3

> ¹University of California, Berkeley Massachusetts Institute of Technology University of Michigan, Ann Arbor Vanderbilt University

NSF FORCES Kickoff, April 12th, 2013

Motivation: Resilient CPS

Attributes

- **1** Functional correctness by design
- 2 Robustness to reliability failures (faults)
- 3 Survivability against security failures (attacks)

Tools [Traditionally disjoint]

- Resilient Control (RC) over sensor-actuator networks
- Economic Incentives (EI) to influence strategic interaction of individuals within systemic societal institutions

CPS integrated with human decision makers [Tightly coupled RC & EI]

- **Spatio-temporal and hybrid dynamics**
- **Large number of strategic interactions with network interdependencies**
- \blacksquare Inherent uncertainties, both public and private

Towards a theory of Resilient CPS

Resilient Control (RC)

- **Threat assessment & detection**
- Fault-tolerant networked control
- Real-time / predictive response
- Fundamental limits of defenses

Economic Incentives (EI)

- Incentive Theory for resilience
- Mechanisms to align Nash allocations with socially optima
- Interdependent risk assessment
- **Insurance & risk redistribution**

EI-aware RC design

Attack model

- Learn CPS parameters
- Unauthorized access
- DoS / Deception
- \blacksquare Max damage / gain yet evade detection

RC design problem

Max performance subject to

- Security levels & control modalities
- CPS dynamics
- Safety constraints
- \blacksquare Attack / fault hypotheses

RC-aware EI design

El for CPS security & reliability $\mathcal{L} \subset \mathcal{L}$

- Network externalities
- Mechanisms design: implement in \sum_{μ_1} NE/BNE the social welfare maximizing correspondences **Fig. 1.** Interdep $\begin{bmatrix} \sin n & \sin n \end{bmatrix}$

RC+EI: Multi-layer integrated design

Network Games: externalities, investment incentives, residual risk

- Players: Attacker(s), Defenders (CPS owners / Government)
- Failure models: Random, Strategic, Correlated, Byzantine
- Network topologies: Transportation, Electricity T&D, Buildings

Stochastic Control: learning, minimax control, performance benchmark

- **Players: Regulators, System operators, CPS managers**
- **Public uncertainties: Joint distribution of reliability failures (natural** events) and security failures (strategic network attacks)
- Control design: Anomaly / intrusion detection, Safety-preserving (switching) control, Supervisory response (reconfiguration / rerouting)

Incentive theory: Mechanism design, mean-field games (static & dynamic)

- **Players: Distributors, Large population of travelers / consumers**
- **Private uncertainties: Individual utilities, asymmetric information**
- **Mechanisms: Public good provision, Demand response / Pricing**

Validation approach

CPS control-security co-experimentation & co-design

Co-experimentation

Co-design

Electricity Transmission and Distribution (T&D)

Wide-area control $\&$ Demand response (DR)

- Data: NASPInet (PMUs), NESCOR, IEC & IEEE models, power system simulators setten.
- RC tools: distributed load control, load aggregation (mean-field), balancing (esp. renewables), PHEV charging – System service, e.g., \mathbf{e} Balance renewable generation \mathbf{e}
- EI tools: DR pricing schemes, T&D regulation, \downarrow (non-)technical losses

Regulated electricity distribution

Distributed load control

Smart meters and utility networks

Building energy management & DR incentives

- Data: Utility pricing, building operations and loads, consumption patterns
- RC tools: Data fusion, model estimation, integrating occupancy, price, & weather predictions, model-predictive control
- EI tools: Residential DR, AMI security & privacy, \downarrow electricity theft/non-payment

Attacks to AMIs

Road Traffic Operations

Mobile Millennium System

- **Industry grade platform**
- 60 million data points/day
- Tools: Data fusion & consistency, privacy preserving sampling, nowcast, routing, operational control, traveler incentive design
- Real security & reliability scenarios

Traffic data sources

Diagnostics and intrusion detection for traffic information systems

Air Traffic Operations

National Airspace System

- **B** Data: Airport operations, aircraft trajectories, aviation weather trajectories, aviation weather
- **Airport: Algorithms for ATC choice** modeling, scheduling, congestion control, and resource re-allocation \blacksquare import: is updated several times a second and broadcast from \blacksquare
- \blacksquare Airspace: Methods for surveillance (conformance monitoring, threat detection), sectorization, re-routing Position and velocity messages are transmitted at a rate of (comormatic momentity, em-

NextGen security & reliability \blacksquare ivery seconds.

Centralized Control

 $\frac{1}{\sqrt{2}}$ Varying degrees of EI+RC integration for air traffic control and comm. systems Varying degrees of EI+RC integration for air traffic control and comm. systems

MIT Lincoln Laboratory provides a quantitative assessment

III. RELATED WORK A number of different organizations estimates Δ \blacksquare Centralized \blacksquare Decen \bullet Airport Control \bullet Control $\begin{bmatrix} \text{Centralized} \end{bmatrix}$ \sim Communication \sim Har

Airport

Integration among individual researchers

Choice of Projects and Coordination

- **Monthly Coordination Telcons:**
	- \blacksquare RC + EI integration for power systems (GS and IM), visitor Catherine Rosenberg (Waterloo), air transportation Systems (HB) so far
	- Game Theory advances (SA) so far
	- CPS VO and inter-agency coordination (XK, JS, SS)
- Exchange of Students and Research Staff
	- Student of HB from MIT have spent time at Berkeley
	- GS has spent time at MIT with AO and SA
- **HiCONS** and RCSS Conferences
	- **Example 2** LR and Linda Bushnell (Washington) co-PC chairs for HiCONS, CPS Week, Philadelphia 2013, XK for 2014?
	- **Example 12 In August 2013** in San Francisco
- **Industry Coordination**

JS and SS will work with industry partners (UTRC, Honeywell, GE) to develop FORCES industrial advisory board.