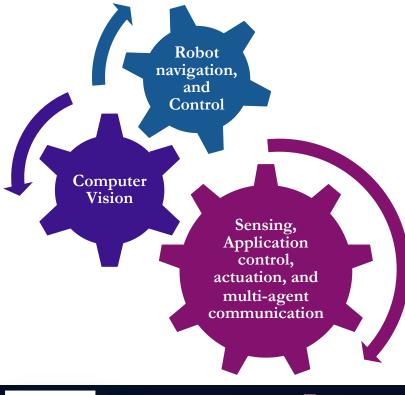
Intelligent See and Spray: Less chemical - Greater Yields

NRI: INT: COLLAB: An autonomous insect Sense, Identify, and Manage PLatform (SIMPL) to advance crop protection strategies

Award #2019-67021-28995 Ajay Sharda, Daniel Flippo and Brain McCornack – Kansas State University, and Cuncong Zhong – University of Kansas


Challenge

- U.S. farmers spend \$15.2 billion worth of pesticides
- Blanket application due lack of pest incidence knowledge

Solution

- Sense, identify and targeted pest control under the canopy
- Computer vision, autonomous ag system and multi-agent communication

Fusing Automation and Robotics in Ag Machine Systems

NIFA

USDA

Scientific Impact

• Scalable and modular sensing, control and communication subsystems for ag and beyond

Broader Impact

- Functional smart system for adoption
- Environmentally sustainable
- Scale independent Ag robotic
- Significant reduction (potentially 40%-60%) in chemical usage

Building Image Library

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022

FTOPCON Producion Agriculture

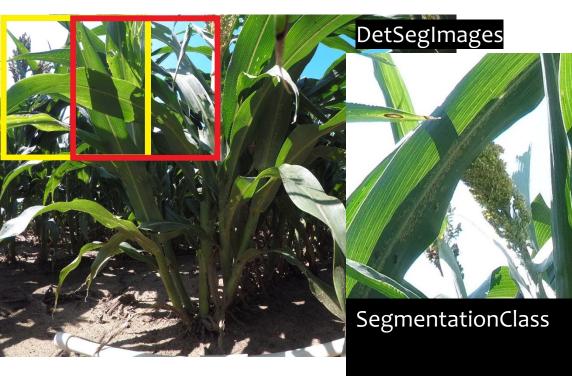
4 Sample dates (Sedgwick County, KS)

4 camera positions (1 top and 3 canopy view)

GoPro Hero Session 5 sensor, 0.5 sec timer

Sugarcane aphids at varied densities

Indirect evidence (sooty mold and honeydew)


~110K raw images in JPEG format (RGB)

Images labeled

PhD Student (Ivan Grijalva)

Dataset

DetAnnotations

<annotation> <folder>Aphid_2021</folder> <filename>222246.JPG</filename> <orig_image>MG0060278</orig_image> <<iize>

<width>600</width> <height>600</height> <depth>3</depth>

</size>
</size>

<name>aphid_cluster</name>
<percent>0.022186</percent>
<cbndbox>
<xmin>111</xmin>
<ymin>231</ymin>
<xmax>287</xmax>

<xmax>28/</xmax>
<ymax>471</ymax>

</bndbox> </object>

</annotation>

▼<annotation>

- <folder>Aphid_2021</folder>
 <filename>153460.JPG</filename>
 <orig_image>TG0010505</orig_image>
 ▼<size>
- <width>600</width> <height>600</height> <depth>3</depth>
- </size>
 </size>
- <name>aphid_cluster</name>
 contoologicality of the second second
- <xmin>78xmin>
 <ymin>@</ymin>
 <xmax>256xmax>
 <ymax>112
- </bndbox>
- </object>
 </object>
- <name>aphid_cluster</name>
 cont>0.001875
- <condbox>
 <xmin>0</xmin>
 <ymin>11</ymin>
 <xmax>23</xmax>
- <ymax>48</ymax> </bndbox>
- </object>
- ▼<object>
 - <name>aphid_cluster</name>
 <percent>0.002842</percent>

 v<bndbox>
 - <xmin>182</xmin>
 <ymin>100</ymin>
 - <xmax>228</xmax>
 <ymax>135</ymax>
 - </bndbox>
 - </object>
 </object>
 - <name>aphid_cluster</name>
 cprcent>0.025794</prcent>

2022 NRI & FRR Principal Investigators' Mee April 19-22, 2022

Sugarcane Aphids: Detection Results

AP	VFNet [1]	GFLV2 [2]	PAA [3]	ATSS [4]
Setting 1	46.7	45.9	45.4	46.3
Setting 2	60.3	60.3	60.3	60.6
Setting 3	62.5	62.1	62.5	63.0
Setting 4	57.6	57.2	57.4	58.0

Average precision of aphid detection of 4 state-of-the-art learning models

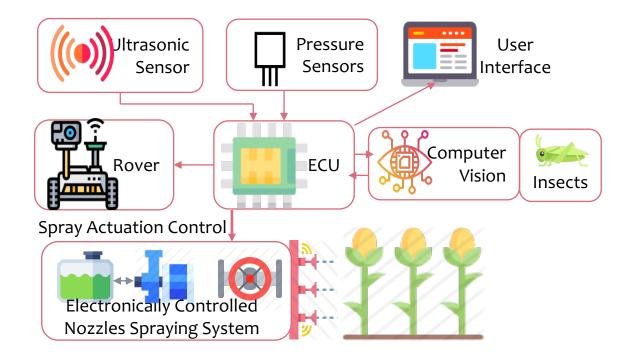
[1] Zhang, Haoyang, et al. "Varifocalnet: An iou-aware dense object detector." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[2] Li, Xiang, et al. "Generalized focal loss v2: Learning reliable localization quality estimation for dense object detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

[3] Kim, Kang, and Hee Seok Lee. "Probabilistic anchor assignment with iou prediction for object detection." European Conference on Computer Vision. Springer, Cham, 2020.

[4] Zhang, Shifeng, et al. "Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

Fusing Automation and Robotics in Ag Machine Systems


2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022

Autonomous Liquid Application Coverage: Field Validation

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022

Autonomous Liquid Application Coverage: Field Validation

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022

Future Work

- Integration of Aphid detection with computer vision
- Integrating computer vision system with liquid application
- Lab and field scale validation for system performance
- Develop basic economics and potential of chemical savings

