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Abstract— We consider the problem of designing a finite-
horizon control policy for a stochastic linear system subject
to probabilistic constraints on both input and state variables.
When the disturbance has unbounded support, a feasibility
issue may arise due to the presence of the state constraint.
In this paper, we address this issue by introducing a suitable
relaxation of the original problem that ensures feasibility. The
relaxation is such that the original state constraint is enforced
whenever is possible; otherwise, the control that pushes the state
closest to the constraint is chosen. This involves formulating
a cascade of two chance-constrained optimization problems,
which are tackled through a scenario-based randomized scheme
expressly tailored to the problem at hand. The theoretical
properties of the obtained solution are investigated and it is
shown that randomization allows one to achieve computational
tractability. The proposed approach finds immediate applica-
tion to stochastic model predictive control.

I. INTRODUCTION

Consider a discrete time stochastic linear system whose
state xt ∈ Rn evolves according to the equation

xt+1 = Axt +But +Bwwt , (1)

where ut ∈ Rm is the control input and wt ∈ Rnw , nw ≤ n, is
a stochastic disturbance with known probability distribution
P over a possibly unbounded support. Matrices A, B, and Bw
have appropriate dimensions, and Bw is assumed to be full
column rank.

Define

J = E

[
M

∑
t=1

xT
t Qtxt +

M−1

∑
t=0

uT
t Rtut

]
, (2)

where Qt and Rt are symmetric and positive semi-definite
matrices, M is the finite horizon length, and E denotes the
expectation taken with respect to probability P.
Our objective is to find a state feedback control policy that
minimizes the finite-horizon average quadratic cost J, while
accounting for constraints on the input and state variables.
Given that the input ut and state xt are uncertain, since they
both depend on the value taken by the stochastic disturbance
wt , constraints are formulated in probabilistic terms. More
specifically, they are required to hold with a predefined
(usually high) probability 1− ε:

P{ f (u0, . . . ,uM−1)≤ ū∧g(x1, . . . ,xM)≤ ȳ} ≥ 1− ε, (3)
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where ε ∈ (0,1) is a user-chosen parameter, and f : RmM →
Rpu and g : RnM → Rpy are convex and continuous vector-
valued functions, ū ∈ Rpu and ȳ ∈ Rpy , and the inequalities
are to be interpreted component-wise.

Typically, constraints on the input and state variables are
represented by bounds on their norm, e.g.,

f (u0, . . . ,uM−1) =

 ‖u0‖∞

...
‖uM−1‖∞

≤ ū,

g(x1, . . . ,xM) =

‖Cx1‖∞

...
‖CxM‖∞

≤ ȳ.

To the purpose of control design, the following disturbance
feedback parametrization is adopted:

ui = γi +
i−1

∑
j=0

θi, jw j i = 0 . . .M−1, (4)

where the open-loop terms γi ∈ Rm and the disturbance
feedback gains θi, j ∈ Rm×nw are design parameters to be
optimized. The linear parametrization in (4) ensures that both
the input ut and the state xt are affine functions of γi and θi, j,
and, hence, the cost J in (2) is quadratic. In the following,
we shall assume that J is strictly convex as a function of the
control design parameters.1

Note that, since Bw is full column rank with pseudo-
inverse B†

w, the values taken by the stochastic disturbance
wt can be recovered from the state measurements

wt = B†
w(xt+1−Axt −But), (5)

which shows that the disturbance feedback control policy in
(4) is indeed a state feedback control policy. Interestingly,
(4) is equivalent to a control policy affine in the state, and
one can recover the optimal unconstrained LQ-control law
by properly setting Γ and Θ, [1].

Note that the possibly unbounded disturbance wt enters
additively on the state (see (1)). If g grows unbounded when
the state increases, as it is the case for norms, then the
feasibility domain as given by (3) may be void, depending
on whether or not the value of ȳ is compatible with the
system dynamics, the disturbance characteristics, the input
constraint, and the allowed violation probability ε . This is

1A sufficient condition for strict convexity to hold is that matrices R and
E[wwT ] are positive definite.



the issue addressed in the present paper, where a suitable
relaxation of the problem

min
γi,θi, j

J (6)

s.t. P{ f (u0, . . . ,uM−1)≤ ū∧g(x1, . . . ,xM)≤ ȳ} ≥ 1− ε

is proposed to recover feasibility. The relaxation is conceived
so as to enforce the original state bound ȳ whenever is
possible, while, otherwise, the smallest feasible state bound
is first determined and then imposed so as to keep the state
as close as possible to the desired domain. This translates
into the cascade of two chance-constrained optimization
problems, which is hard to solve. A randomized resolution
scheme to enhance computational tractability is proposed
and a theoretical analysis of its properties is provided. The
findings of this paper have immediate implications on the
recursive feasibility of the implementation of the proposed
control strategy over a receding horizon as done in model
predictive control.

A. Paper structure

The rest of the paper unfolds as follows. After some
bibliographical remarks in Section I-B, we introduce some
compact notation in Section I-C. In Section II, the problem
relaxation is formally introduced, while its algorithmic solu-
tion based on randomization is given in Section III. In this
section, the theoretical properties of the obtained solution are
also discussed. A numerical example is finally provided in
Section IV.

B. Bibliographical remarks

Alternative approaches to tackle problems with both input
and state constraints and where the disturbance has un-
bounded support have been proposed in [2], [3], [4], [5], [6],
[7], [8], [9], [10]. In [2], [6], [7], state constraints are replaced
by a penalization term accounting for the state constraint
violation so as to avoid infeasibility. In [3], [5], [8], [9],
[10], an analytic convex relaxation of chance constraints
is adopted, while in [4] the problem is reduced to one
with bounded disturbance by suitably cutting the tails of
the disturbance distribution. In all cases, the disturbance
is assumed to be a sequence of i.i.d. (independent and
identically distributed) random variables. Many approaches
also assume that the disturbance has a Gaussian distribution,
[2], [3], [4], [5], [8], [10].

This paper differs from these approaches in that a
randomized-based solution is considered, which allows us
to drop the independence and Gaussianity assumptions. In-
deed, randomized methods have been recently developed
to address design in the presence of uncertainty, making
solvable problems that were otherwise deemed computation-
ally intractable, [11]. This paper differs from our previous
conference contribution [12] where either a term penalizing
state constraint violation is added to the cost or a certain pre-
defined admissible deterioration of the system performance
is introduced while relaxing the state constraints.

Other approaches to constrained stochastic control for sys-
tem (1) based on randomized techniques have been proposed
in [13], [14], [15] under the assumption, however, that the
noise has bounded support, or in [16] considering input
constraints only.

C. Compact notation
In order to ease the notation we define:

x =


x1
x2
...

xM

 u =


u0
u1
...

uM−1

 w =


w0
w1
...

wM−1

 .
Then, it is easy to show that

x = Fx0 +Gu+Hw (7)

where matrices F, G and H are given by

F =


A
A2

...
AM

 G =


B 0n×m · · · 0n×m

AB B
. . .

...
...

. . . . . . 0n×m
AM−1B · · · AB B



H =


Bw 0n×nw · · · 0n×nw

ABw Bw
. . .

...
...

. . . . . . 0n×nw

AM−1Bw · · · ABw Bw

 .
Similarly, by setting

Γ =


γ0
γ1
...

γM−1

Θ =


0m×nw 0m×nw · · · 0m×nw

θ1,0 0m×nw

. . .
...

...
. . . . . . 0m×nw

θM−1,0 · · · θM−1,M−2 0m×nw

 ,
the disturbance feedback policy (4) can be rewritten in the
following compact form

u = Γ+Θw.

By plugging this expression into (7), we can make explicit
the affine dependence of x on the design parameters Γ and
Θ:

x = Fx0 +GΓ+(GΘ+H)w

As for the average quadratic cost (2), we can introduce
suitable block diagonal matrices Q and R and write it as
follows

J = E
[
xT Qx+uT Ru

]
.

This expression can be made explicit as a quadratic function
of Γ and Θ. Derivations are straightforward and omitted here.

Finally, if we collect in λ the nonzero components of Γ

and Θ, then, we can adopt the following notations

u = u(w;λ ), x = x(w;λ ), J = J(λ ),

which point out the dependence of input, state, and cost on
the optimization vector λ and the disturbance realization w.



II. PROBLEM RELAXATION TO ENSURE FEASIBILITY

The idea developed to guarantee feasibility is as follows.
We replace ȳ in (3) with an optimization variable h ∈Rpy to
be minimized component-wise. This way, the state constraint
is always feasible since by taking h large enough it becomes
ineffective. However, in no way taking a too large h is
a good choice and we see that the presence of the new
optimization variable h requires to handle two typically
conflicting objectives: the minimization of the bound on the
state so as to satisfy the original state bound in (3), and the
minimization of the cost function J(λ ) that represents the
performance of the system.

We deal with these different objectives by means of a two-
step approach whose goal is to stay as close as possible
to the original problem. In the first step we focus on the
bound on the state constraint: the optimization variable h
is minimized and an additional constraint is enforced so as
to ensure that h gets not smaller than the original bound ȳ.
Then, in the second step, we focus on the minimization of
the cost function J(λ ), where the optimal h obtained in the
first step is taken as bound for the state constraint. That is,

min
λ ,h

hT T h (8a)

s.t.

{
P{ f (u(w;λ ))≤ ū∧g(x(w;λ ))≤ h} ≥ 1− ε

h≥ ȳ
;

min
λ

J(λ ) (8b)

s.t. P{ f (u(w;λ ))≤ ū∧g(x(w;λ ))≤ ho} ≥ 1− ε,

where ho is the optimal value for h obtained in (8a).
In (8), T is a positive definite matrix that can assign a

different importance to the different components of h.
The idea behind the cascade of problems in (8) is as

follows. When the original problem (6) is not feasible, the
minimization of h in (8a) in the first step allows one to find
the smallest bound on the state that preserves feasibility;
instead, when (6) is feasible, ho can be taken as ȳ. As a
matter of fact, the constraint h ≥ ȳ is introduced in (8a) to
avoid excessively conservative solutions where the bound
on the state constraint is smaller than ȳ. Note that the
objective function in (8a) does not depend on λ and it
maybe that the same ho is attained for different values of
λ , each one possibly achieving a different value of the cost
function J(λ ). This extra degree of freedom is exploited in
the second step to optimize the performance of the system.
Note that in (8b) feasibility is not an issue anymore, since
the bound ho computed in the first step is adopted in the
probabilistic constraint. The overall solution returned by
the cascade of problems (8) is a pair (λ o,ho), where λ o

determines the control action to be implemented and ho is the
probabilistically guaranteed bound for the state constraint.
This ho, once computed, can be inspected for comparison
with the original ȳ.

III. SCENARIO-BASED RESOLUTION SCHEME

Problems (8a) and (8b) are, in general, hard to solve be-
cause of the presence of a probabilistic constraint, which can
be non-convex in spite of the convexity of f and g. In order
to enhance computational tractability, some approximation
has to be accepted. Here, we resort to a randomized scheme
that is in the line of the so-called scenario approach, [17],
[18], [19], [20]. In this scheme, the returned solution comes
accompanied by precise guarantees about feasibility for the
original probabilistic constraint in problems (8a).

The idea of the scenario scheme is quite simple: N distur-
bance realizations are extracted according to the underlying
probability distribution, say

w(1) =
[
w(1)

0 w(1)
1 . . . w(1)

M−1

]
w(2) =

[
w(2)

0 w(2)
1 . . . w(2)

M−1

]
...

w(N) =
[
w(N)

0 w(N)
1 . . . w(N)

M−1

]
;

then, in each optimization problem, the probabilistic con-
straint is replaced by N non probabilistic constraints, those
obtained in correspondence of the seen disturbance realiza-
tions. Precisely, the scenario version of (8a) and (8b) consists
in the following cascade of optimization problems:

min
λ ,h

hT T h (9a)

s.t. f (u(w(k);λ ))≤ ū,

g(x(w(k);λ ))≤ h, k = 1, . . . ,N,

h≥ ȳ;

min
λ

J(λ ) (9b)

s.t. f (u(w(k);λ ))≤ ū,

g(x(w(k);λ ))≤ h?, k = 1, . . . ,N,

where h? is the optimal value of h obtained in (9a).
Note that (9a) and (9b) are convex problems with a

finite number of constraints, so that they can be solved by
resorting to standard solvers for convex optimization, that is,
randomization has led us back to computational tractability.
Moreover in this case, by convexity of constraints, since
hT T h is strictly convex with respect to h, the value h? is
uniquely determined by (9a), and, similarly, the solution to
(9b), say λ ?, is unique.

The overall solution to the cascade of problems (9) is
defined as (λ ?,h?), and, (9) can be seen as an empirical
counterpart of (8). All comments regarding the interpretation
of (8) applies mutatis mutandis to (9). Note eventually that
the pair (λ ?,h?) is feasible and optimal for (9), so that the
second optimization problem (9b) can be thought of as a tie
break rule to choose among the possible multiple solutions
of the first optimization problem (9a) the one that minimizes
J(λ ).



A. Chance-constraint feasibility of the scenario solution

Using (λ ?,h?) in place of (λ o,ho) is the price we have to
pay in order to enhance computational tractability. However,
one main question arises about the feasibility of (λ ?,h?) for
the probabilistic constraint

P{ f (u(w;λ ))≤ ū∧g(x(w;λ ))≤ h} ≥ 1− ε, (10)

so as to establish a link between the obtained scenario-based
solution and the original problem (8). The theory of the
scenario approach has mainly dealt with this question,
showing that the answer is indeed affirmative with high
confidence in a number of contexts, provided that N is
big enough, [17], [18], [19], [21], [22]. The best available
result is that of [19] which largely improves over previous
achievements. However, to date the result of [19] has been
proven only for scenario optimization programs whose
solution is determined by a specific tie break rule which
may differ from the one corresponding to the cascade of
problems in (9) (see point 5 in Section 2.1 of [19]). The
following theorem provides the extension of the result
obtained in [19] to the present setup where a cascade of
problems is considered.

Theorem 1: Let β ∈ (0,1) be a user-chosen confidence
parameter. If the number of extracted disturbance realizations
N is chosen so as to satisfy

d−1

∑
i=0

(
N
i

)
ε

i(1− ε)N−i ≤ β , (11)

where d is the dimensionality of (λ ,h), then it holds with
confidence at least 1−β that

P{ f (u(w;λ
?))≤ ū ∧ g(x(w;λ

?))≤ h?} ≥ 1− ε.

Due to space limitation the proof is omitted. It is,
however, available in [23] and on request from the authors.

In words, the theorem says that the scenario-based solution
(λ ?,h?) is feasible for the probabilistic constraint (10) with
confidence at least 1−β . The fact that the guarantee is pro-
vided with some confidence only is intrinsically so, because
(λ ?,h?) depends on the random extraction of w(1), . . . ,w(N),
and β keeps into account the possibility of seeing an
anomalous sample w(1), . . . ,w(N) which is not representative
enough. However, it has to be noted that, as shown in [24],
the N satisfying (11) scales logarithmically with 1/β , so that
small values of β , like 10−5 or even 10−7, can be forced in
without affecting N too much. With such small values for
β , one can rely on the fact that (λ ?,h?) is feasible for the
probabilistic constraint (10), and hence for (8), beyond any
reasonable doubts.

IV. NUMERICAL EXAMPLE

In this section the proposed approach is applied to
a numerical example taken from [10]. We consider a
mechanical system composed by 4 masses and 4 springs as

depicted in Fig. 1.

 

Fig. 1: Scheme of the mechanical system.

The state of the system is given by the displacement of
masses with respect to their nominal positions, and by their
derivatives, i.e. x = [d1, d2, d3, d4, ḋ1, ḋ2, ḋ3, ḋ4]

T . The
initial condition is x0 = [10, −10, 10, −10, 0, 0, 0, 0]T .
The control inputs are the forces u1, u2, u3 acting on the
masses shown in Fig. 1. All the masses and the stiffness
coefficients are set to 1, and the system is written as in
(1) by discretizing it under the assumption that the input
is kept constant in the interval [t, t +Ts), with Ts = 1 s. We
also suppose that the masses displacements and velocities
are affected by a stochastic additive disturbance, which after
discretization leads to w∼WGN(0, I4) and Bw = [0.5I4 I4]

T .
The objective is to keep the masses positions as close

as possible to the nominal ones, while, at the same time,
a requirement on the maximum speed of the masses has
to be satisfied. To this purpose, the weight matrices in the
cost function J are set so as to penalize deviations from the
nominal positions:

Q =

[
I4 04×4

04×4 04×4

]
R = 10−6I3,

and the following constraints are enforced on the speeds of
the masses:

‖Cxi‖∞ ≤ ȳi, i = 1, . . . ,M,

where C = [04×4 I4], ȳi = 10, i = 1, . . . ,M and M = 8 is
the considered time horizon. The constraint is enforced in
probability with ε = 0.1. No input constraints are instead
imposed.

Following the approach in Section II, the bounds ȳi, i =
1, . . . ,M were replaced by the optimization variables hi, i =
1, . . . ,M. We set β = 10−6, returning N = 4614 according to
(11), and the cascade of problems (9) with T = I8 was then
solved to obtain the scenario-based solution.

It turned out that the original ȳ was not feasible as for the
first 2 time instants. Indeed, the smallest feasible bounds
obtained from the resolution of (9a) were h?1 = 11.62,
h?2 = 11.08 and h?i = ȳi, i = 3, . . . ,M. The optimal scenario-
based control policy obtained from problem (9b) achieved a
cost J(λ ?) = 2305.55. A Monte Carlo verification revealed
that the probabilistic constraint (10) was satisfied by (λ ?,h?)
as guaranteed by Theorem 1.



For the sake of comparison, the obtained scenario control
policy was tested against a finite horizon LQ controller. In
order to somehow account for the speed requirement, in the
design of the LQ controller, the cost function was modified
so as to assign a penalization on the speed of the masses:

JLQ = E[xT QLQx+uT RLQu]

QLQ =

[
qJI4 04×4
04×4 qȳI4

]
RLQ = 10−6I3

where the weights qJ and qȳ permits one to tune the relative
importance between positions and velocities in the cost
function.

The performances of the obtained scenario-based control
policy and of the LQ controller for various choices of qJ
and qȳ are compared in Table I – where the achieved cost
J and the actual probability of violation εȳ of the original
constraint with ȳ, as computed via Monte Carlo simulations,
are reported for all the approaches – and in Fig. 2 – where the
cumulative probability distributions of ‖Cxi‖∞, i = 1, . . . ,M,
again computed via Monte Carlo simulations, are depicted
for all the approaches.

TABLE I

qJ qȳ Approach J εȳ

- - Scenario based 2305.55 0.1248

1 0 LQ 126.44 1
0 1 LQ 4347.20 0.9724

0.2 9 LQ 2318.50 0.9960

As it appears, the proposed scenario-based approach
achieves a good trade-off between J and εȳ and, in
particular, this latter, though not equal to the required 0.1
value (which was eventually unfeasible), is very close to
0.1 since in the first step the h?i was pushed towards ȳi as
much as possible.

When the LQ controller is designed accounting for the
mass displacements only (qJ = 1 qȳ = 0), the cost function
J turns out to be much improved, but the speed limit ȳ is
violated by a huge extent, see in particular Fig. 2(b). When
on the contrary the LQ controller is designed accounting
for speeds only while displacements are neglected, the cost
function J is worse than the one obtained by the scenario-
based solution, while εȳ is still very high as compared to
0.1. In particular, as shown in Fig. 2(c), the constraint is
significantly violated in the first time step, while, in the
other time steps, the velocity is excessively reduced with
respect to the allowed limit ȳ. Also in the third case, where
qJ = 0.2 and qȳ = 9 are chosen so as to make the LQ
controller achieving a cost J close to the one obtained by
the scenario-based solution, the same kind of violation of
the constraint as in the previous case is obtained, see Fig.
2(d).

The behaviors of the different controllers can be ap-
preciated also analysing the state trajectories reported in
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(a) Scenario based solution, h?1 blue dash-dotted line, h?2 red
dash-dotted line.
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(b) LQ controller qJ = 1, qȳ = 0
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(c) LQ controller qJ = 0, qȳ = 1

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l

P
r{
‖C

x
i
‖ ∞

≤
l
}

(d) LQ controller qJ = 0.2, qȳ = 9

Fig. 2: Cumulative probability distributions of ‖Cxi‖∞, i =
1, . . . ,8 for the scenario based solution and for the LQ
controllers; ȳ is represented by the marked vertical solid line.



Fig. 3 (displacements) and Fig. 4 (velocities) for 100 new
disturbance realizations. The scenario-based controller, by
exploiting the allowed speed, is able to steer the masses
close to their nominal positions. Instead, although the LQ
controller violates the constraint in the first time step, in the
other steps it conservatively keeps the speeds too small, so
that the masses are not steered to the nominal position.
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(b) LQ controller qJ = 0.2, qȳ = 9

Fig. 3: Displacements of the masses: d1 (blue diamonds), d2
(green circles), d3 (red squares), d4 (cyan triangles).

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

Time

V
e
lo
c
it
ie
s

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

Time

V
e
lo
c
it
ie
s

(a) Scenario-based controller0 1 2 3 4 5 6 7 8
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(b) LQ controller qJ = 0.2, qȳ = 9

Fig. 4: Velocities of the masses: ḋ1 (blue diamonds), ḋ2
(green circles), ḋ3 (red squares), ḋ4 (cyan triangles).
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