
Poli-RRT*: optimal RRT-based planning for constrained and feedback
linearisable vehicle dynamics

Matteo Ragaglia, Maria Prandini and Luca Bascetta

Abstract— This paper proposes a Rapidly exploring Random
Trees (RRT)-based planning strategy (Poli-RRT*) that com-
putes optimal trajectories in presence of vehicle constraints
(like, for instance, differential and actuation constraints) with-
out approximating the system dynamics through linearisation,
but relying on exact linearisation. In this way, the optimal
control problem that is introduced to determine the trajectories
for extending the tree can be expressed as a quadratic program
and efficiently solved. Poli-RRT* is formulated and tested via
simulation on a unicycle-like model of a vehicle subject to
actuation constraints. Notably, the approach can be applied
to any other feedback linearisable vehicle model, subject to
different types of constraints.

I. INTRODUCTION

In the past few years autonomous aerial, underwater,
and ground vehicles have gained considerable popularity in
the robotics field, as they allow to perform critical tasks
without endangering the life of human pilots/drivers. Their
applications range from scientific exploration to provision
of commercial services, from search and rescue to military
operations like for instance reconnaissance or intelligence
gathering.
Nowadays most of such unmanned vehicles are teleoperated
by humans through dedicated control stations. However, as
application scenarios become more and more complex, the
possibility to let human operators focus on high-level tasks
rather than on control of the vehicle becomes more and more
interesting. As a consequence, there is a strong perceived
need for autonomy, in order to improve the whole system’s
efficiency, reliability, and safety.

Among the huge number of functionalities that are re-
quired to develop an autonomous vehicle, three are partic-
ularly important, i.e. localisation, planning, including ob-
stacle avoidance, and trajectory tracking. Though they are
all crucial to let the vehicle complete a task, it must be
noticed that the planner has the responsibility to compute
a path/trajectory1 that should not only take the vehicle
to the desired location, but that must be also “feasible”,
i.e., compatible with the vehicle kino-dynamic constraints,
and “safe”. For example, in natural outdoor environments,
characterised by poorly traversable terrains, slopes and a
variety of obstacles, a safe path is characterised by the easiest
traversable terrains, and have to minimise the vehicle roll-
over risk due to the presence of slope.
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1In this paper we use the term “planning” and “path planning”, with
a slight abuse of notation, to refer to either path and trajectory planning
problems.

Considering the state-of-the-art in planning techniques
(see Section II for further details), sampling-based algo-
rithms represent nowadays the most widespread “practical
approach” to the planning problem. The outstanding success
they achieved in the last decade is due to a rather simple yet
effective idea: using a collision-checking module to provide
information about feasibility of candidate trajectories. In this
way, a set of points sampled from the free-space is connected
in order to build a graph (roadmap) of feasible trajectories
that are used to construct the solution to the original planning
problem.
In most practical applications, however, one may be inter-
ested in finding paths of minimum cost, and in accounting
for vehicle constraints like, for example, actuator limitations.
Unfortunately, moving from a standard planning problem,
i.e., finding a path, to an optimal planning problem, i.e., find-
ing a path that optimises a desired cost function, or even to
an optimal planning problem with constraints, computational
intractability comes at no surprise. As a matter of fact, there
have been several attempts [1]–[5] to propose an algorithm to
solve an optimal planning problem with vehicle constraints,
and all these approaches were based either on the shooting
method [6] or on linearisation of the vehicle model.

The aim of this work is to propose Poli-RRT*, which is the
first RRT-based planner that takes into account vehicle con-
straints but it does not need to represent the vehicle dynamics
with an approximate linearised model. In fact, the proposed
methodology relies on an exact linearisation of the model
that allows to efficiently recast the optimal control problem
used to calculate the trajectories for extending the tree as a
quadratic program, without any model simplification.
Poli-RRT* is formulated considering a unicycle-like vehicle
and actuation constraints, but can be easily applied to any
other feedback linearisable vehicle model with constraints of
different type.

II. RELATED WORK

Two main approaches to address the planning problem
have been developed in the literature: search-based and
sampling-based techniques. A third methodology, based on
the MPC technique [7], exists as well, though it is less
popular.

Search-based algorithms [8], [9] look for the sequence of
actions that allow the vehicle to go from a start to a goal
state in an optimal way, constructing a graph of states and
searching a solution into the graph.

Sampling-based algorithms exploits the idea of sampling
a continuous state space, instead of considering a pre-



defined finite set of configurations, as it often occurs with
search-based methods. They proved to be very effective for
planning in high-dimensional spaces since, even though they
are not complete, they provide probabilistic completeness:
the probability that the planner returns a solution, if one
exists, goes exponentially to one as the number of samples
approaches infinity [10].
The most important sampling-based planners to date are
Probabilistic RoadMaps (PRM) [11], [12] and Rapidly-
exploring Random Trees (RRT) [13]. A brief description of
the PRM approach and an overview of RRT-based algorithms
is presented in the following.

PRM algorithm is a multiple-query method that first con-
structs a graph (the roadmap) representing a set of collision-
free trajectories, and then answers queries by computing the
shortest path connecting the initial state with the final state
through the roadmap. PRM algorithms are probabilistically
complete as the probability of failure decays to zero expo-
nentially with the number of samples used in the construction
of the roadmap [12].
Multiple-query methods, however, are valuable in a static, a-
priori known, highly structured environment, while in most
on-line planning problems the environment is unstructured,
dynamic, not known a priori or it is computationally chal-
lenging (or even infeasible) to compute a roadmap a priori.
This is the main reason behind the success of single-query
counterpart to PRM: RRT.

First introduced in [13], RRT is an incremental sampling-
based planning algorithm developed for searching high-
dimensional continuous state spaces. It represent the single-
query counterpart to PRM, since the incremental nature of
RRT does not require to set the number of samples a priori,
and returns a solution as soon as a path from the start to
the goal state is found (or alternatively as soon as the set of
trajectories built by the algorithm is rich enough), enabling
fast on-line implementations.
Rapidly-exploring Random Graphs (RRG), RRT* and Opti-
mal RRTs have been introduced in [1], [14]–[18] to address
the optimal path planning problem, as well as path planning
problems with complex task specifications. RRG algorithm
builds incrementally a connected roadmap, randomly sam-
pling the state space. Starting from RRG, RRT* can be
obtained by simply removing cycles from graph, ensuring
that vertices are reached through minimal-cost paths.
Not only RRTs represent an effective solution for the plan-
ning problem in case of linear robot dynamics, but they
have been shown to work effectively for systems with
differential constraints and non-linear dynamics [19]–[21].
More in depth, in [1] the authors derive sufficient conditions
to ensure asymptotic optimality of the RRT* algorithm for
systems with differential constraints and show how to apply
RRT* to a unicycle-based vehicle and to an holonomic
double integrator robot. The same approach is generalised to
arbitrary kino-dynamic systems in [2] by using the shooting
method to connect pairs of states, thus obtaining feasible yet
inherently suboptimal trajectories.
Other attempts to obtain a more sophisticated merge between

RRT-based planning and optimality concerns, in the case of
non-linear dynamics, have also been recently proposed. At
first [22] considers the problem of planning in continuous
state and action spaces with non-linear deterministic dynam-
ics. The proposed solution combines heuristics, to bias the
search, with repeated runs of the RRT algorithm (with tighter
constraints on each iteration) to improve the solution quality.
In [3] the authors present an algorithm, named “Kinodynamic
RRT*”, that guarantees asymptotic optimality for any system
characterised by linear differential constraints, in state spaces
of any dimension. The same approach can be applied to
non-linear dynamics as well, by using their first-order Taylor
approximations.
Furthermore, in [4] the “LQR-RRT*” algorithm is proposed
to solve planning problems with complicated or under-
actuated dynamics, by locally linearising the system and
applying linear quadratic regulation (LQR).
Finally, in [5] a new method for applying RRT* to kino-
dynamic motion planning problems is introduced, using
finite-horizon linear quadratic regulation (LQR) to measure
cost and to extend the tree.

III. PROPOSED APPROACH

In this section we describe the proposed RRT-based
planning algorithm, namely Poli-RRT*, which computes a
solution to the optimal constrained planning problem, for a
unicycle-like vehicle moving in a 2-dimensional Euclidean
space, without linearising/approximating the nonlinear
system dynamics, while obeying to actuation constraints
and avoiding collisions with a-priori known static obstacles.

The following model is adopted for describing the vehicle
dynamics 

ẋ = v cos(θ)
ẏ = v sin(θ)
θ̇ = ω

v̇ = a

(1)

The state q of the system includes the vehicle pose (x,y,θ)
and linear velocity v, i.e., q = [x,y,θ ,v]T , and is con-
fined to some bounded set Q = [xmin, xmax]× [ymin, ymax]×
[θmin, θmax]× [vmin, vmax]. A value q ∈ Q is called node
according to the RRT terminology.
The control input is given by the linear acceleration a and
the angular velocity ω , which are subject to the following
constraints

a ∈ A = [amin,amax] , ω ∈Ω = [ωmin,ωmax] . (2)

Given two nodes q and q′, we let e = (q,q′) identify the
optimal trajectory that connects q to q′ while minimising
some cost function and satisfying the actuation constraints
(2). The cost associated with e is denoted by C(e). According
to the RRT terminology e is called an edge.

System (1) is initialised at a certain node qstart =
[xstart ,ystart ,θstart ,vstart ]

T ∈ Q and has to be steered to some
goal set Qgoal ⊂ Q, while avoiding obstacles and following



an optimal trajectory. The subset of the state space that is
free of obstacles is denoted by Q f ree.

Poli-RRT* first builds a tree T = (QT ,ET ), where QT ⊂
Q f ree is a set of nodes with cardinality N (defined by the
user), and ET is a set of collision-free edges connecting nodes
in QT . Among all sequences of nodes q0,q1,q2, . . . ,qm with
length 2 ≤ m ≤ N, satisfying qi ∈ QT , i = 0,1, . . . ,m, q0 =
qstart , qm ∈Qgoal , and ei = (qi,qi+1)∈ ET , i = 0,2, . . . ,m−1,
Poli-RRT* then chooses the one with minimal overall cost
C(→ qm) = ∑

m−1
i=0 C(ei), which is a non-decreasing cost over

the entire node sequence.
A key ingredient of Poli-RRT* algorithm is represented

by the procedure adopted to build the edge ei = (qi,qi+1),
i.e., an optimal trajectory that connects node qi to node
qi+1, while satisfying the actuation constraints (2), and its
cost C(ei). This procedure rests on a two-step approach
combining optimal control with a receding horizon strategy
and is explained in Section III-A. The description of Poli-
RRT* algorithm is postponed to Section III-B.

A. Two-step approach to edge design

By applying to (1) the feedback linearisation strategy [23][
a
ω

]
=

 cos(θ) sin(θ)

−
sin(θ)

v
cos(θ)

v

[u1
u2

]
, (3)

we obtain the following double integrator linear model
ẋ = vx

ẏ = vy

v̇x = u1

v̇y = u2

(4)

where we set vx = vcos(θ) and vy = vsin(θ). In turn,
constraints (2) can be rewritten as

amin ≤ cos(θ)u1 + sin(θ)u2 ≤ amax (5)
ωmin ≤−

sin(θ)
v

u1 +
cos(θ)

v
u2 ≤ ωmax

1) Optimal control without accounting for actuation con-
straints: Given that the feedback linearised system (4) is
a double integrator with state s = [x,y,vcos(θ),vsin(θ)]T ,
we can apply the approach in [3] to obtain the minimum
time trajectory connecting two states qi = [xi,yi,θi,vi]

T and
qi+1 = [xi+1,yi+1,θi+1,vi+1]

T .
The idea is to first fix the final time τ > 0 and determine

the input u = [u1,u2]
T : [0,τ]→ℜ2 for (4) that optimises the

finite horizon cost

Jτ(u) =
∫

τ

0

(
1+u(t)T Ru(t)

)
dt (6)

with R = RT ∈ ℜ2×2 positive definite, subject to the
constraints s(0) = si = [xi,yi,vi cos(θi),vi sin(θi)]

T

on the initial state and s(τ) = si+1 =
[xi+1,yi+1,vi+1 cos(θi+1),vi+1 sin(θi+1)]

T on the final
state. Let J?τ be the resulting optimal cost, i.e.,

J?τ = min
u:[0,τ]→ℜ2

∫
τ

0

(
1+u(t)T Ru(t)

)
dt.

Then, the optimal value τ? for τ can be obtained by minimis-
ing J?τ . Correspondingly, one can obtain the optimal input u?

and state s? = [x?,y?,v?x ,v
?
y ]

T , which, in turn, maps back to
the optimal q? = [x?,y?,θ ?,v?]T . In particular, from [3], we
have the following analytic expression for J?τ :

J?τ = τ +(si+1− exp(At)si)
T G(τ)(si+1− exp(At)si) , (7)

where G(τ) is the weighted controllability Gramian

G(τ) =
∫

τ

0
exp(A(τ− t))BR−1BT exp

(
AT (τ− t)

)
dt.

Once τ? = argminτ>0 J?τ is determined, then, u?(t) and s?(t),
t ∈ [0,τ?], are given by:

u?(t) = R−1BT exp
(
AT (τ?− t)

)
d?

s?(t) = [I4 04]exp
([

A BR−1B
04 −AT

]
(t− τ

?)

)[
si+1
d?

]
where I4 is the 4×4 identity matrix and 04 is the 4×4 zero
matrix and we set d? = G(τ?)−1 (si+1− exp(Aτ?)si).

Let q?(t), t ∈ [0,τ?], be the optimal trajectory s?(t), t ∈
[0,τ?], mapped back to the original state coordinates of
the unicycle model (1). If the actuation constraints (5) are
satisfied by u?(t) and q?(t), for all t ∈ [0,τ?], then, the edge
ei = (qi,qi+1) is given by the optimal trajectory q? that takes
the system from node qi to node qi+1 within a time interval
of length τ? with a cost C(ei) = J?

τ? = Jτ?(u?). If that is not
the case, a receding horizon strategy is put in place so as to
force the constraints (5) to hold, while keeping the resulting
trajectory close to the optimal one along a time horizon of
length τ?. This is explained in the following.

2) Receding horizon with actuation constraints: To sim-
plify computation, we introduce a discrete time version of
the feedback linearised system (4):

x(k+1) = x(k)+ vx(k)∆

y(k+1) = y(k)+ vy(k)∆

vx(k+1) = vx(k)+u1(k)∆

vy(k+1) = vy(k)+u2(k)∆

(8)

where ∆ > 0 is the sample time interval. By setting s(k) =
[x(k),y(k),vx(k),vy(k)]T and u(k) = [u1(k),u2(k)]T , system
(8) can be rewritten in the compact form

s(k+1) = Fs(k)+Hu(k)

where F and H are appropriately defined matrices.
Let k f := b τ?

∆
c be the discrete time version of the final

time τ? as computed in Section III-A.1.
Our goal is to choose u(0),u(1), . . . ,u(k f −1) so as to keep
s(k) close to the optimal constrained-free trajectory s?(k∆)
computed in Section III-A.1, while forcing the constraints
(5) to hold at each discrete time instant k along the discrete
time horizon [0,k f ].



To this purpose, we introduce the following constrained
optimisation problem C−OPT (k):

min
u(k),u(k+1),...,u(k f−1)

k f

∑
h=k+1

(s(h)− s̄h)
T Wh (s(h)− s̄h) (9)

subject to:
s(h+1) = Fs(h)+Hu(h)

s(k) = s̄k

amin ≤ [cos(θ̄h) sin(θ̄h)]u(h)≤ amax

ωmin ≤ [−
sin(θ̄h)

v̄h

cos(θ̄h)

v̄h
]u(h)≤ ωmax

∀h = k, . . . ,k f −1,

with Wh, h = k + 1,k + 2, . . . ,k f , positive definite matrices
of dimension 4. Once s̄h, h = k,k+1, . . .k f , and θ̄h and v̄h,
h = k,k+ 1, . . .k f − 1, are given, C−OPT (k) is an easy to
solve convex optimisation problem with quadratic cost (s(h)
is a linear function of the optimisation variables) and linear
constraints.
Let u?,k(h), h = k, . . .k f −1, be the solution C−OPT (k), and
s?,k(h), h = k, . . .k f , the trajectory obtained by applying u?,k

to (8), starting from s̄k at time k.
The receding horizon strategy then unfolds as follows. We

initially solve the C−OPT (k) for k = 0 by setting

s̄h = s?(h∆),h = 0, . . . ,k f

θ̄h = θ
?(h∆),h = 0, . . . ,k f −1

v̄h = v?(h∆),h = 0, . . . ,k f −1

where s? (and, correspondingly, θ ? and v?) is the optimal
constrained-free trajectory computed in Section III-A.1. The
obtained solution u?,k, k = 0, will necessarily satisfy the con-
straints (5) at time k since the trajectory s?,k satisfies s?,k(k)=
s̄k and constraints (5) are imposed in the C−OPT (k) by
using θ̄h and v̄h, h = k,k+1, . . .k f −1, derived from s̄h, h =
k,k+1, . . .k f . However, the solution u?,k will not necessarily
satisfy the constraints at time k + 1,k + 2, . . . ,k f − 1. This
is because, in general s?,k(h) will be different from s̄h for
h = k+1,k+2, . . . ,k f −1.

If u?,k, k = 0, does satisfy the constraints at time k +
1,k+2, . . . ,k f −1, then, we have a feasible solution and we
can define the edge ei as given by the optimal constrained
trajectory q?,k that takes the system from node qi to a node
close to qi+1 (the larger is the weighting matrix Wk f the
closes the system will get to qi+1) within a time interval of
length τ? with a cost C(ei) = Jk f ∆(u?,k) obtained by plugging
into (6) a piecewise constant version of u?,k.

If, instead, u?,k, k = 0, does satisfy the constraints at some
time h ∈ [k + 1,k + 2, . . . ,k f − 1], then, we do not have a
feasible solution yet. We hence apply only the first input
sample u?,k(k), and determine the further input values by
solving the C−OPT (k) for k = 1 with

s̄h = s?,k−1(h∆),h = k, . . . ,k f

θ̄h = θ
?,k−1(h∆),h = k, . . . ,k f −1 (10)

v̄h = v?,k−1(h∆),h = k, . . . ,k f −1.

Again if u?,k, k = 1, does satisfy the constraints at all times
k + 1,k + 2, . . . ,k f − 1, then, we have a feasible solution
and we can define the edge ei as the optimal constrained
trajectory q?,k that takes the system from node qi to a
node close to qi+1 through u(0) = u?,0(0), u(h) = u?,1(h),
h = 1,2, . . . ,k f − 1. The cost associated to ei will be given
by C(ei) = Jk f ∆

(
[u?,0(0),u?,1(1), . . . ,u?,1(k f −1)]T

)
.

If, instead, u?,k, k = 1, does satisfy the constraints at some
time h ∈ [k + 1,k + 2, . . . ,k f − 1], then, we apply only the
input sample u?,k(k), increment k to k = 2, and determine the
further input values by solving the C−OPT (k) with s̄h, h =
k,k+1, . . .k f , and θ̄h and v̄h, h = k,k+1, . . .k f −1, defined
in (10).

This kind of reasoning is repeated until a feasible solution
is found at some iteration k < k f −1 or k = k f −1 is reached.

B. Poli-RRT* Algorithm

The algorithm Poli-RRT* works as follows:

1) tree initialisation: an empty tree T = (QT ,ET ) is
instantiated, where QT is the set of nodes and ET is the
set of edges/trajectories connecting the nodes. Then,
node q0 = qstart is added to T : QT = {qstart};

2) random sampling: a state configuration qrand is ran-
domly sampled within the free portion of the state
space Q f ree according to an uniform distribution;

3) neighbour radius computation: the neighbour radius
is computed as the value r such that the set

R(qrand ,r) = {q ∈ QT | e1 = (q,qrand) =⇒ C(e1)< r

∨ e2 = (qrand ,q) =⇒ C(e2)< r}

contains a d-dimensional ball of radius γball =
γRRT∗(log |QT | /|QT |)1/d centred in qrand , where d =
4 is the state space dimension and γRRT∗ > 2(1 +
1/d)1/d(µ(Q f ree)/ηd)

1/d , with µ(Q f ree) and ηd the
volume of Q f ree and of the unit ball in the d-
dimensional Euclidean space, respectively (see [1],
[14] for further details). By defining Qreach as the
subset of QT containing all the nodes that are inside a
4-dimensional ball of radius γball , centered in qrand :

Qreach = {q ∈ QT | ||qrand−q||2 ≤ γball} ,

it is possible to determine r as

r = argmax
q∈Qreach

(
max

{
C(eq,1),C(eq,2)

})
,

where we set eq,1 = (q,qrand) and eq,2 = (qrand ,q).
4) minimum-cost path selection: in order to connect

qrand to the tree along a minimum-cost path the fol-
lowing steps are taken:
• the minimum cost collision-free edge emin =
(qmin,qrand) among the edges e = (q,qrand), q ∈
QT , is determined by computing

qmin = argmin
q∈{q∈QT |C(e)≤r ∧CollisionFree(e)}

(C(→ q)+C(e)) ,



where r is the neighbour radius, CollisionFree(e)
is a function that returns true when e is a collision-
free trajectory, false otherwise, and C(→ q) repre-
sents the total cost of the current-best path going
from qstart to q;

• qrand and emin are added to T :

QT = QT ∪{qrand} , ET = ET ∪{emin}

5) tree rewiring: every time a new node qrand is added
to the tree it is necessary to check if there exist a
minimum-cost path reaching any other node inside
the tree and passing through qrand . More in detail,
for every node q ∈ QT , if e = (qrand ,q) satisfies
CollisionFree(e) = true, C(e) ≤ r, and C(→ qrand)+
C(e)<C(→ q), then, the tree is rewired:

ET =
{

ET \{eprev}
}
∪{e} ,

where r is the neighbour radius, eprev = (Parent(q),q)
is the previous edge connecting q to the tree and
Parent(q) is a function returning the node from which
edge eprev starts.

6) termination: the algorithm keeps iterating steps 2), 3),
4) and 5) until |QT | = N and then it stops;

7) optimal trajectory: if the goal area has been reached,
the minimum cost-to-go node inside Qgoal is selected:

Qgoal ∩QT 6= /0 =⇒ qgoal = argmin
q∈(Qgoal∩QT )

C(→ q)

and the trajectory egoal =(qstart ,qgoal) connecting qstart
with qgoal is returned along with the entire tree T .

Remark Note that at steps 4 and 5 in Poli-RRT* algorithm,
condition C(e)< r needs to be verified on an edge e = (q,q′)
involving some node that is candidate for further processing.
Violation of such a condition is easy to evaluate since it
holds that C(e)≥ J?

τ? = minτ≥0 J?τ , where J?τ is the cost of an
unconstrained optimal trajectory driving system (1) from q to
q′ in an interval of length τ and is given in analytic form in
(7). Thus, the adoption of the neighbour radius r introduced
at step 3 is effective in reducing the number of nodes to be
processed at each iteration of the algorithm. Furthermore, it
does not modify the outcome of the algorithm in terms of
the computed optimal trajectory, [1], [14].

IV. SIMULATION RESULTS

A MATLAB© implementation of the proposed algorithm
was developed and tested, considering the dynamic model
(1), with the state bounded as follows: x ∈ [0,100], y ∈
[0,100], θ ∈ [−π,+π], and v ∈ [0,1]. In order to solve the
constraint-free optimal control problem (see Section III-A.1),
a matrix R= 10 I2 equally penalising linear acceleration a and
angular velocity ω was chosen. As for the receding horizon
strategy in Section III-A.2, eventually refining the solution to
the constraint-free optimal control problem so as to impose
the saturation constraints, a sample time interval ∆ = 0.1s

0 20 40 60 80 100
0

20

40

60

80

100

X [m]

Y
 [

m
]

Fig. 1. Virtual environment: start pose (red dot), goal area (magenta square)
and obstacles (yellow circles).

was selected. Furthermore, matrices Wh, h = 1, . . . ,k f , in the
C−OPT (k) problem (9) were set to

Wh = 10 I4, h = 1, . . . ,k f −1, Wk f = 100 I4,

so as to assign a stronger weight to the tracking error at the
last time instant k f with respect to that at the previous time
instants h = 1, . . . ,k f −1.

The virtual environment used as a test-bed is depicted in
Figure 1, and it is composed of a start configuration, a goal
area, and four non-overlapping circular obstacles.

The algorithm has been tested considering different values
of the maximum tree cardinality N, i.e., 200, 250, 300, 400,
500, 600, 750, 1000, 1500, 2000, 2500, 3000 and 5000
nodes. For each of these values, several runs were realised
imposing two different actuation constraints (see equation
(2)): the former characterised by larger bounds

a ∈ A1 = [−0.50,+0.50] , ω ∈Ω1 = [−0.50,+0.50]

the latter by more strict limits

a ∈ A2 = [−0.20,+0.20] , ω ∈Ω2 = [−0.20,+0.20]

Figure 2 shows the trees obtained considering different max-
imum cardinality values and imposing actuation constraints
A1 and Ω1.

Figures 3(a) and 3(b) show the actuation profiles (linear
acceleration a and angular velocity ω) corresponding to the
optimal trajectory found with maximum tree cardinality N
set to 1000 nodes and imposing the actuation limits A1 and
Ω1. The pictures clearly show that the values of the control
variables never exceed the upper and lower bounds. On the
other hand, Figures 3(c) and 3(d) show the actuation pro-
files corresponding to a different optimal trajectory obtained
considering the same maximum tree cardinality, but A2 and
Ω2 as actuation limits. Note that in this case, the actuation
profiles partially saturate the upper/lower bounds, but they
still never exceed them.

Finally, Figure 4 refers to the saturation limits A1 and Ω1,
and demonstrates that, when more nodes are added to the
tree up to the maximum tree cardinality of 3000 nodes, the
cost of the optimal solution decreases and asymptotically
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Fig. 2. Planning experiments: tree nodes (green crosses), tree edges (solid blue), optimal solution (solid red) and optimal trajectory nodes (red circles).
Maximum tree cardinality set to 200 nodes 2(a), 500 nodes 2(b), 750 nodes 2(c), 1000 nodes 2(d), 2000 nodes 2(e) and 3000 nodes 2(f).
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Fig. 3. Actuation profiles of the optimal solution with N = 1000 (solid blue) and actuation limits (dashed red) posed by A1 and Ω1 (plots (a) and (b)),
and A2 and Ω2 (plots (c) and (d)).

approaches the optimum value. On the other hand, Figure 5
shows the average cost of the optimal solution over multiple
runs performed with the same maximum cardinality. As
expected, not only the average cost decreases with respect
to the maximum tree cardinality, but a better average cost
is achieved while considering as actuation limits A1 and Ω1
(blue line) rather than the more restrictive A2 and Ω2 sets
(red line).

V. CONCLUSIONS

This paper proposes the first RRT-based planner able
to compute an optimal and dynamically feasible trajectory
(taking into account both differential and actuation con-
straints), without representing the system dynamics with
an approximate linearised model, but relying on an exact
linearisation. This approach was used to generate feasible
and optimal trajectories for a unicycle-like vehicle moving
in a virtual environment populated by obstacles.
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Fig. 4. Cost of the optimal solution as a function of the tree cardinality
up to a maximum value N = 3000 (actuation limits A1 and Ω1).
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and Ω2 (red line).

Regarding future developments, an extension to hybrid dy-
namic models will be considered. Furthermore, in order to
enable real-time computation, an efficient implementation
of the proposed planning strategy will be realised, possibly
adopting an heuristic that enables a branch-and-bound ap-
proach so as to avoid attempts to connect nodes that cannot
contribute to an optimal solution.
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