Information in networked world

Galina Schwartz*

*UC Berkeley

Asymmetric Information Adverse selection

Arrow impossibility theorem & its progenies I

We will make no distinction between TRANSACTION COSTS & CONTRACT COSTS

Today: Adverse Selection

- Lemon Market [Akerlof]
- Signalling [Spence]

Zoom on asymmetric info

-							
Zoom on asymmetric info							
timing	Asymmetric info categories	Mechanisms of revelation	Examples				
ex ante	Adverse selection [AS]	A signals to P	pre-existing condition (HIV virus / stuxnet)				
		to reveal hidden type (knowledge)	private info (network maintenance level)				
ex post	Moral hazard [MH]	P designs contracts to induce	care to avoid theft				
		desired A's action(s)	effort / investment decision				
ex ante	Transaction costs	AS					
ex post		MH + hidden knowledge					

Arrow ['85] hidden action

Means to reveal asymmetric info				
time	Asymmetric info	Usage	Examples	
ex ante	Signaling	a tool for AS	education, skill	
ex post	Screening	a tool for MH	warranty	

Principal: offers a contract; Agent: Accepts or rejects [GI], p. 183 - 184, Figure 7, Table 7

http://www.rasmusen.org/GI/chapters/pageproofs4th/chap-07.pdf

GALINA SCHWARTZ (UCB) REVIEW 04-27-2016 3 / 20

Connecting asymmetric info with contractual costs

Costly info & costly contracts			
Adverse selection [AS]	ex ante		
Moral hazard [MH]	ex post		
Contractual costs > 0	ex ante, ex post		

From asymmetric info to costly info (\approx costly contracting)

- Player 1 = less informed player
- Player 2 = more informed player (has *hidden / private* info)
- Let player 1 pay (to an outside party) for player 2 private info ⇒ Asymmetric info = perfect info, but contracting is costly

Reverse? from costly contracts to asymmetric info?

- 4 □ ト 4 圖 ト 4 필 ト · 夏 · かくで

4 / 20

Connecting costly contracts with asymmetric info

From costly contracts to asymmetric info?

- Examples (no info asymmetry, but costly enforcement)
 - Your bike: stolen by your neighbor the theft is known ← no asymmetric info
 - 2 Technology: stolen & replicated; the theft produces counterfeit goods the theft is known ← no asymmetric info
- In both examples = costly to prove / enforce good behavior
- If symmetric info, but unverifiable in court \approx asymmetric info

Q: Is asymmetric info \approx costly contracting?

A: Costly contracts & asymmetric info are surprisingly closely related.

In fact, economists view such environments as practically identical.

4 □ ▶ 4 를 ▶ 4 를 ▶ 4 를 ▶ 3 를 보고 있으므로

Principal-Agent paradigm: CPS applications

Example 1

- P: CPS manager for electric distributor
- A: Co that supplies & supports smart meters

Example 2

- P: Transportation: CalTrans
- A: Co that supplies & manages sensor network

Example 3

- P: Regulatory authority / Industry consortium
- A: CPS managers responsible for security choices

Akerlof'70: Lemon Market: seller type is hidden knowledge

```
n > 2, m > 1
n+m # of players
                                                       I = \{1, ..., i, ..., n\}
          a finite set of agents (sellers), i \in I
          a finite set of principals (buyers), j \in J J = \{1, ..., j, ..., m\}
          seller types (or \{\theta_i\}_{i=1}^I)
                                                              t = \{H, L\}; (or \theta_i \in \Theta_i)
          a fraction of L-type agents
                                                              (known prob. dist.)
          value of type t car for a buyer
                                                              w^H > w^L
                                                              u^i \in \mathbb{R}^1_{\perp}
          utility function of i
                                                              e^i = (u^i, w^i)
          characteristic of i
                                                              v^{\text{max}} \in (w^L, w^H)
          seller reservation value v^{\max} := \max_i v^i
           v^H < w^H and v^L < w^L
\pi^{j}
                                                              \pi^j \in \mathbb{R}^1_+
          profit of i
                                                              e^j = (\pi^j, v^j)
          characteristic of i
Fi
          a set of admissible characteristics for i
                                                              e = (e^1, \ldots, e^{n+m})
e \in E a pure exchange economy
Ε
          a space of all possible economies
                                                              E = \prod_{i \in I} \sum_{i \in I} E^i x E^j
           a (market) price of type t car
```

7 / 20

Buyers are identical; risk neutral, and seller type is hidden.

Akerlof'70: Lemon Market: full info benchmark I

No hidden knowledge: perfectly observable seller types (H or L)

Then, prices differ with type: $p^L \neq p^H$. From [IR] constraints:

$$u^t = p^t - v^t \ge 0$$
 and $\pi = w^t - p^t \ge 0$

we have:

$$v^L \le p^L \le w^L$$
 and $v^H \le p^H \le w^H$

Depending on price(s) formation (surplus sharing between sellers and buyers or demand-supply equilibrium), from standard economic analysis, market clearing prices p^L and p^H exist.

Akerlof'70: Lemon Market: a solution

Due to hidden knowledge $p^L = p^H = p$. From [IR] constraints:

$$u^t = p - v^t \ge 0$$
 and $\pi = w^j - p \ge 0$

From buyer's and type H seller's [IR] resp. we have:

$$p \leq \bar{w}$$
 and $p \leq v^H$

or

$$v^H \leq p \leq \bar{w}$$
,

where $\bar{w} = \lambda w^L + (1 - \lambda) w^H$ is buyer's expect car value (on average). But if λ is high enough, i.e., $\bar{w} < v^H$ no p exists for [IR]s to hold.

 $\bar{w} < v^H \iff$ lemon market \iff missing market

Type H does not trade. \iff missing market.

Akerlof'70: Lemon Market: formalization I

Theorem

For any game $G(N, M, E, \lambda)$ there exists $\lambda^* < 1$, such that for any $\lambda \in (\lambda^*, 1]$ type H market is missing. Only type L trades.

A generalization

Bayesian approach (following F&T notation) [p. 215]. Types are drawn from some objective (or subjective) prob. distribution $p(\theta) = p(\theta_1, ..., \theta_I)$.

Then
$$\bar{w} = \int\limits_{\Theta} w(\theta) p(d\theta)$$

Spence'73 Job Market: education = costly signal

```
n+m # of players
                                                                    n > 2, m > 1
            a finite set of agents (students), i \in I
                                                                    I = \{1, ..., i, ..., n\}
            a finite set of principals (employers), j \in J
                                                                    J = \{1, ..., j, ..., m\}
            student types (or \{\theta_i\}_{i=1}^I)
                                                                    t = \{H, L\}; (or \theta_i \in \Theta_i)
                                                                    (or any known prob. dist.)
            a fraction of L-type agents
           type t productivity for the employer
                                                                    w^H > w^L
                                                                    s^i \in \mathbb{R}^1_+, w^i(s) = \mathrm{const}
            education: a choice variable; costly
                                                                    u^i \in \mathbb{R}^1
            utility function of i
                                                                    e^{i} = (u^{i}, t, s^{i}); e^{j} = (\pi^{j})
            characteristic of i/j
            student's reservation wage v^{max} := max_i v^i
                                                                   v^{\max} \in (w^L, w^H)
            v^H < w^H and v^L < w^L
 \pi^{j}
                                                                    \pi^j \in \mathbb{R}^1
            profit of i
 Fi/j
                                                                    e^i \in F^{i/j}
            a set of admissible characteristics for i/j
                                                                    e = (e^1, \ldots, e^{n+m})
 e \in E
          exchange economy
 F
            a space of all possible economies
                                                                    E = \prod_{i \in I, i \in J} E^i x E^j
                                                                    (price of labor)
            market wage
 ω
Employers are identical; risk neutral, and student's type is hidden.
```

Spence'73 Job Market: solution requires single crossing I

Fig. 1. Indifference curve for low-productivity job applicants (steep) and indifference curve for high-productivity job applicants (flat)

- with no signal \rightarrow back to Akerlof'70
- with a signal (education): separating eq. $(s = 0, w^L)$; $(s = \hat{s}, w^H)$

ALINA SCHWARTZ (UCB) REVIEW 04-27-2016 12 / 20

Akerlof'70: Lemon Market

Lemon Market = Missing Market

It is hard (or impossible) to buy a cheap (and reliable) used car. Sellers with good cars (type H do not sell them – market price is too low due to lemons. [Sellers with type H cars prefer to donate.]

Is it a trivial result?

Yes, but only after it was discovered. \iff No, it is not a trivial result.

On Impossibility of Informationally Efficient Markets

Grossman-Stiglitz'80 Impossibility = Interior Optimum

Is it a trivial result?

Yes, but only after it was discovered. \iff No, it is not a trivial result.

Mechanism design via contracts I

Incomplete contracting = surplus sharing between P & A

- Bargaining: dividing a surplus (dollar / pie) [fixed size]
- Incomplete contracting: dividing a surplus [variable size]

Incomplete Contracting = generalized bargaining

Contract theory jargon

- Property rights = the rules of dividing surplus between players
- Agency problem, incomplete contacts, principal-agent problem: Allocating property rights for endogenous (variable) surplus under info asymmetries:
 - hidden information
 - hidden actions

Materials: Akerlof-Spence-Stiglitz

Literature

- Spence, M. Signaling in Retrospect and the Informational Structure of Markets. The American Economic Review, 92(3):434-459. 2002. http://www.jstor.org/stable/3083350
- Stiglitz, J. E. Information and the Change in the Paradigm in Economics. The American Economic Review, 92(3):460-501. 2002. http://www.jstor.org/stable/3083351
- Akerlof, G. A. Behavioral Macroeconomics and Macroeconomic Behavior. The American Economic Review, 92(3):411-433. 2002. http://www.jstor.org/stable/3083349
- Akerlof, George. The Market for "Lemons": Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3):488-500. 1970. http://www.jstor.org/stable/1879431
- Spence, Michael. Job Market Signaling. The Quarterly Journal of Economics, 87(3):355-374. 1973. http://www.jstor.org/stable/1882010

Further readings

- Sanford J. Grossman and Joseph E. Stiglitz. On the impossibility of informationally efficient markets. The American Economic Review, 70(3): 393-408, 1980. http://www.jstor.org/stable/1805228
- Sanford Grossman and Joseph Stiglitz. On the impossibility of informationally efficient markets: Reply. The American Economic Review, 72(4): 875. 1982. http://www.jstor.org/stable/1810032
- Stiglitz, J. E. The Contributions of the Economics of Information to Twentieth Century Economics. The Quarterly Journal of Economics, 115(4):14411478. 2000. https://www.jstor.org/stable/2586930
- Tirole, J. Incomplete Contracts: Where Do We Stand? Econometrica, 67(4):741-781. 1999. http://www.jstor.org/stable/2999457

04-27-2016

16 / 20

Materials: from Akerlof-Spence-Stiglitz to present

- E. Rasmusen, Games and information. [GI]
- 4-th ed. Wiley-Blackwell, 2006. Chapters:
- 7. Moral Hazard: Hidden Actions
- 8. Further Topics in Moral Hazard
- 9. Adverse Selection11. Signaling
- E. Rasmusen links to downloadable resources for Games and information. [GI], 4-th ed. Wiley-Blackwell, 2006.

Further readings

- Feltovich, N., Harbaugh, R., & To, T. Too Cool for School? Signalling and Countersignalling. The RAND Journal of Economics, 33(4), 630 – 649. 2002. http://www.jstor.org/stable/3087478
- Hörner, J., & Vieille, N. Public vs. Private Offers in the Market for Lemons. Econometrica, 77(1), 29 69. 2009. http://www.jstor.org/stable/40056521
- Daley, B., & Green, B. Waiting for News in the Market for Lemons. Econometrica, 80(4), 1433-1504. 2012. http://www.jstor.org/stable/23271407

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からぐ

04-27-2016

17 / 20

Materials: Foundations of Risk and Insurance

The beginnings

- John W. Pratt. Risk aversion in the small and in the large. Econometrica, 32:122–136, 1964. https://www.jstor.org/stable/1912743
- Karl Borch. Equilibrium in a reinsurance market. Econometrica, 30(3):424-444, 1962. https://www.jstor.org/stable/1909887
- Rothschild, M., & Stiglitz, J. E. Increasing risk: I. A definition. Journal of Economic theory, 2(3), 225-243. 1970.
 http://www.sciencedirect.com/science/article/pii/0022053170900384
- Isaac Ehrlich and Gary S. Becker. Market insurance, self-insurance, and self-protection. Journal of Political Economy, 80(4):623-648, 1972. https://www.jstor.org/stable/1829358

Insurance with info asymmetries (classics)

- Michael Rothschild & Joseph Stiglitz. Equilibrium in competitive insurance markets: An essay on the economics of imperfect information. Quarterly Journal of Economics, 90(4):630-49. 1976. http://www.jstor.org/stable/1885326
- Charles Wilson. A model of insurance markets with incomplete information. Journal of Economic Theory, 16(2):167-207. 1977. http://www.sciencedirect.com/science/article/pii/0022053177900047
- Stiglitz, J. Monopoly, Non-Linear Pricing and Imperfect Information: The Insurance Market. Review of Economic Studies, 44(3), 407430. 1977. http://www.jstor.org/stable/2296899
- Spence, M. Product differentiation and performance in insurance markets, Journal of Public Economics, 10-3 427-447.
 1978. http://www.sciencedirect.com/science/article/pii/0047272778900555
- Rothschild, M. & Stiglitz J. Competition and insurance 20 years later. Geneva Risk and Insurance Review, 22(2):73-79.
 1997. https://www.genevaassociation.org/media/203292/ga1997_gr22(2)_rothschildstiglitz.pdf
- Richard Arnott and Joseph E. Stiglitz. Moral hazard and nonmarket institutions: Dysfunctional crowding out of peer monitoring? The American Economic Review, 81(1):179-190, 1991. http://www.jstor.org/stable/2006794

GALINA SCHWARTZ (UCB) REVIEW 04-27-2016 18 / 20

Reference materials: Risk and Insurance I

Basics and Beyond

- Baranoff, E., Brockett, P. L., & Kahane, Y. Enterprise and Individual Risk Management. 2012.
 http://2012books.lardbucket.org/books/enterprise-and-individual-risk-management/index.html
- Ray Rees & Achim Wambach. The microeconomics of insurance. In Foundations and Trends in Microeconomics, 4:1–163. Now Publishers, 2008. http://www.nowpublishers.com/article/Details/MIC-023
- Rees, R., Gravelle, H. & Wambach, A. Regulation of insurance markets. Geneva Papers on Risk & Insurance Th., 24(1): 55-68. 1999. https://www.genevaassociation.org/media/203767/ga1999_gr24(1)_rees_gravellewambach.pdf
- Louis Eeckhoudt and Henri Loubergé. The economics of risk: A (partial) survey. Handbook of Risk Theory: Epistemology, Decision Theory, Ethics, and Social Implications of Risk, 5, 113–133. Springer, 2012. http://link.springer.com/referenceworkentry/10.1007/k2P78-94-007-1433-5

Reference materials: Handbook of Insurance. Springer. 2013 I

Handbook of Insurance: selected chapters

- Louberg, Henri, Developments in Risk and Insurance Economics: The Past 40 Years. 1:1–40. http://dx.doi.org/10.1007/978-1-4614-0155-1_1
- Paul Embrechts & Marius Hofert. Risk measures and dependence modeling. 6:135–165.
 http://dx.doi.org/10.1007/978-1-4614-0155-1 6
- R. Winter. Optimal Insurance under Moral Hazard. 9:205-230. http://dx.doi.org/10.1007/978-1-4614-0155-1_9
- Georges Dionne, Nathalie Fombaron, & Neil Doherty. Adverse selection in insurance contracting. 10:231-280. http://dx.doi.org/10.1007/978-1-4614-0155-1_10
- Keith J. Crocker & Arthur Snow. The theory of risk classification. 11:281–313. http://dx.doi.org/10.1007/978-1-4614-0155-1_11
- P. Picard. Economic analysis of insurance fraud. 13:349–395. http://dx.doi.org/10.1007/978-1-4614-0155-1_13
- Pierre-André Chiappori & Bernard Salanié. Asymmetric information in insurance markets: Predictions and tests. 14:397-422. http://dx.doi.org/10.1007/978-1-4614-0155-1_14
- Robert W. Klein. Insurance market regulation: Catastrophe risk, competition, and systemic risk. 31:909–939. http://dx.doi.org/10.1007/978-1-4614-0155-1_31