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Abstract— We provide a novel iterative algorithm for dis-
tributed convex optimization over time-varying multi-agent
networks, in the presence of heterogeneous agent constraints.
We adopt a proximal minimization perspective and show that
this set-up allows us to bypass the difficulties of existing algo-
rithms while simplifying the underlying mathematical analysis.
At every iteration each agent makes a tentative decision by
solving a local optimization program, and then communicates
this decision with neighboring agents. We show that following
this scheme agents reach consensus on a common decision
vector, and in particular that this vector is an optimizer of
the centralized problem.

I. INTRODUCTION

Optimization in multi-agent networks has attracted signif-
icant attention in the control and signal processing literature,
due to its applicability in different domains like power
systems [1], [2], wireless networks [3], [4], robotics [5],
etc. Typically, agents solve a local decision making problem,
communicate their decisions with other agents and repeat
the process on the basis of the new information received.
The main objective of this cooperative set-up is for agents
to reach consensus and agree on a common decision that
optimizes a certain performance criterion for the overall
multi-agent system.

This set-up allows each agent to keep some of its own data
private and enables distributed computation, which may lead
to computational savings compared to centralized paradigms.
Based on the underlying communication structure, two main
optimization architectures can be distinguished, namely, de-
centralized and distributed optimization, according to the
terminology of [6]. In the former, computation is distributed
across agents but there is a centralized communication infras-
tructure (e.g., a central authority) that collects information
from each agent and transmits updates to all of them. On the
other hand, in distributed optimization not only computation
but also communication is distributed, and agents exchange
information only with neighboring agents.

Most literature builds on the seminal work of [6-8] (see
also [9], [10] and references therein for a more recent
problem exposition), where a wide range of optimization
problems is considered, mostly from a decentralized per-
spective, using techniques based on gradient descent, dual
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decomposition, and the method of multipliers. The recent
work [11] deals with similar problems but from a mean
field game theoretic perspective, where agents’ decisions
converge to a Nash equilibrium, not necessarily an optimizer,
as the number of agents tends to infinity. Distributed con-
sensus and/or optimization problems, but in the absence of
constraints in the underlying optimization programs, have
been considered in [12-22]. In most of these references the
underlying network is allowed to be time-varying. In the
presence of constraints and following a distributed paradigm,
the authors of [10], [23-25] adopt Newton based or gra-
dient/subgradient based approaches and show asymptotic
agreement of the agents’ solutions to an optimizer of the
centralized problem. In [26] a distributed alternating di-
rection method of multipliers approach is adopted and its
convergence properties are analyzed, whereas in [27], [28] an
approach based on constraint exchange is adopted. In these
cases, however, the underlying network is time-invariant.

In a time-varying environment, [29-31] follow a projected
gradient/subgradient methodology to solve distributed con-
vex optimization problems in the presence of constraints.
In [29], however, the particular case where the agents’
constraint sets are all identical is considered. As a result, the
computational complexity of each agents’ local optimization
program is the same with the one of the centralized problem.
In [30] a more general case is considered, again using a
projected subgradient methodology. A similar problem is
considered in [31] but the objective functions are required
to be differentiable with Lipschitz continuous gradients.

In this paper we deal with distributed convex optimization
problems over time-varying networks, under a possibly dif-
ferent constraint set per agent. Our approach is most closely
related to the work of [29-31], but we adopt a proximal mini-
mization instead of a gradient/subgradient based perspective.
We provide a detailed convergence and optimality analysis
of the proposed algorithm, extending the results of [29], [30]
(compare our results with the proof of Lemma 5.4 in [30]),
while relaxing the differentiability assumptions of [31].

The paper is structured as follows. In Section we
formulate the proposed distributed algorithm based on prox-
imal minimization and state the underlying assumptions. In
Section [[Tl] we provide some preparatory results and establish
useful relations regarding the agents’ local solutions, whereas
in Section we show convergence and optimality of the
developed algorithm. Finally, Section [V] concludes the paper
and provides some directions for future work. All proofs
have been omitted in the interest of space, but can be found
in [32].



Algorithm 1 Distributed, optimal consensus
1: Initialization

2: k=0.

3:  Consider z;(0) € X;, forall i =1,...,m.

4: For 1 = 1,..., m repeat until convergence

s zilk) = X, ak(k)ay (k).

6:  xi(k+1) = argmin,, ey, fl(acl)—&-ﬁk)ﬂzl(k)—xZHQ
7: k+k+1

II. DISTRIBUTED CONSTRAINED CONVEX OPTIMIZATION
A. Problem set-up

We consider a time-varying network of m agents that
communicate to cooperatively solve an optimization problem
of the form

P: min Y fi(z) (1)
i=1

reR™ 4

m
subject to x € ﬂ X,

i=1
where © € R" represents a vector of n decision variables. For
eachi=1,...,m, f;(-) : R™ — R is the objective function
of agent ¢, whereas X; C R” is its constraint set. Since
most of the subsequent results are based on f;(-) and X;
being convex, we formalize it in the following assumption.

Assumption 1: [Convexity] For each ¢ = 1,...,m, the
function f;(-) : R™ — R and the set X; C R™ are convex.

Problem P cannot be solved in a centralized fashion if
fi(-) and X; represent private information, available only
to agent ¢. Moreover, even in the case where all necessary
information (objective functions and constraint sets) was
available to all agents, imposing all the constraints in one
shot, by encoding (!, X;, may result in a program which
is too intensive computationally. To account for information
privacy, and simultaneously alleviate the computational ef-
fort, we follow a distributed, iterative approach, where each
agent ¢ solves an appropriate, local optimization problem
and exchanges information with other agents based on the
outcome of this optimization. We will show that under
certain structural and communication assumptions agents
reach consensus to an optimal solution of P. The basic steps
of the proposed approach are summarized in Algorithm [I]
whose interpretation is as follows.

Initially, each agent 4, 7 = 1,...,m, starts with some
arbitrary x;(0), which constitutes its estimate of what a
minimizer of P might be (step 3, Algorithm ). This estimate
belongs to the local constraint set X; of agent 4, but not
necessarily to (.-, X;. One choice for z;(0) is e.g., 2;(0) €
arg min,, cx, fi(x;). At iteration k, each agent ¢ constructs
a weighted average z;(k) of those solutions z;(k), j =
1,...,m, communicated by the other other agents and its
local one (step 5, Algorithm . Coefficient a’(k) € [0,1]
indicates how agent ¢ weights the solution received by agent
j at iteration k, and a’ (k) = 0 encodes the fact that agent i

J
does not receive any information from agent j at iteration k.

Agent ¢ solves then a local minimization problem, seeking
the optimal solution within X; that minimizes a performance
criterion, which is defined as a linear combination of the local
objective function f;(x;) and a quadratic term penalizing the
difference from z;(k) (step 6, Algorithm [1). The relative
importance of these two terms is dictated by c(k) € Ry.
Note that, under Assumption |l| and due to the presence of
the quadratic penalty term, the resulting problem is strictly
convex with respect to x;, and hence admits a unique
solution.

B. Further structural assumptions and communication re-
quirements

We impose some additional assumptions on the structure
of problem P in (I) and the communication set-up that is
considered in this paper. These assumptions are crucial for
the analysis of Section

Assumption 2: [Compactness and Continuity] For each

i=1,...,m, X; CR"is compact. Moreover, f;(-) : R" —
R is Lipschitz continuous on X,; with Lipschitz constant
L;eRy,ie, foralli=1,...,m,

|fi(z) = fi(y)| < Lillz —yl|, forall z,y € X;.  (2)

Assumption 3: [Interior point] The feasibility region
ﬂ;":'l X; of P has a non-empty interior, i.e., there exists
ze()~, X;and p € Ry such that {z e R" : |[z —z|| <
P} C Nty Xi

Note that due to the compactness condition of Assumption
co (Ui~ X;) is also compact, with co(-) denoting the
convex hull of its argument. Let then D € R be such
that ||z|| < D for all € co (;~; X;). Moreover, due to
compactness and Assumption |3} by the Weierstrass’ theorem
(Proposition A.8, p. 625 in [6]), P admits at least one optimal
solution. Therefore, if we denote by X* C (N, X; the
set of optimizers of P, then X* is non-empty. Notice also
that f;(-), ¢ = 1,...,m, is continuous due to the convexity
condition of Assumption [T} the addition of Assumption [2] is
to require Lipschitz continuity. Note that f;(-),i=1,...,m,
is not required to be differentiable.

We impose the following assumption on the coefficients
{c(k)}r>0, that appear in step 6 of Algorithm 1]

Assumption 4: [Coefficient {c(k)}r>0] Assume that for
all k > 0, ¢(k) € Ry and {c(k)}k>0 is a non-increasing
sequence, i.e., c(k) < ¢(r) for all k¥ > r, with r > 0.
Moreover,

D) Y gc(k) = oo,

2) Yorooc(k)? < oo

In standard proximal minimization [6] convergence is
highly dependent on the appropriate choice of c(k). As-
sumption @| is in fact needed to guarantee convergence of
Algorithm[I)in Section[I[V-C] A direct consequence of the last
part of Assumption {4|is that limy_,o ¢(k) = 0. One choice
for {c(k)} k>0 that satisfies the conditions of Assumption [4]
is to select it from the class of generalized harmonic series
[33]. Note that Assumption [Z_f] is in a sense analogous to the
conditions that the authors of [29], [30] impose on the step-
size of their subgradient algorithm.



In line with [7], [8], [19] we impose the following as-
sumptions on the information exchange between the agents.

Assumption 5: [Weight coefficients] There exists n €
(0,1) such that for all ¢,5 € {1,...,m} and all & > 0,
aj(k) > n, and a’(k) > 0 implies that a’(k) > 1. Moreover,
for all k > 0,

1) Z;:l aj(k )—1forallz::1,...,m,

2) Yty al(k)=1forall j=1,...,m

The interpretation of having a uniform lower bound 7,

independent of k, for coefficients a’(k) in Assumption

is that it ensures that each agent is mixing information
received by other agents at a non-diminishing rate in time
[29]. Moreover, point 1 in Assumption [5] ensures that this
mixing is a convex combination of the other agent estimates,
assigning a non-zero weight to its local one due to the fact
that al(k) > n, while point 2 ensures that agents influence
each other equally in the long run of the algorithm (see [29]
for further elaboration on this issue).

For each k£ > 0 the information exchange between the m
agents can be represented by a directed graph (V, E},), where
the nodes V = {1,...,m} are the agents and the set Ej, of
directed edges is given by

Ep = {(j,)+ aj(k) >0}, 3)

i.e., each edge implies that at time k& agent ¢ receives infor-
mation, namely estimate x;(k)) from agent j. If a}(k) > 0
we also say that j is a neighboring agent of ¢ at time k.
Under this set-up, Algorithm [1]is fully distributed, because
at iteration k each agent ¢ = 1,...,m receives information
only from neighboring agents. This information exchange is
time-varying, since the weighting coefficients depend on the
iteration index k, and may be occasionally the empty set.
Let Eo. = {(j,i) : (j,i) € Ej, for infinitely many &}
denote the set of edges ( 7,1 ) that represent agent pairs that
communicate directly infinitely often. We then impose the
following connectivity and communication assumption.

Assumption 6: [Connectivity and Communication] The
graph (V, E,) is strongly connected, i.e., for any two nodes
there exists a path of directed edges that connects them.
Moreover, there exists T > 1 such that for every (j,7) € Foo,
agent ¢ receives information from a neighboring agent j at
least once every consecutive 7 iterations.

Assumption [0] guarantees that all pairs of agents mix
their information infinitely often via some network path
(not necessarily with one-line communication), and the in-
tercommunication interval is bounded. For a more formal
exposition and further details on the interpretation of the
imposed network structure the reader is referred to [18], [29].

Assumptions [5] and [6] are identical to Assumptions 2-5
in [29] (the same assumptions are also imposed in [30]).
Note that these are rather standard for distributed consensus
problems; for further relaxations the reader is referred to
[19], [34].

The proposed iterative methodology resembles the struc-
ture of proximal minimization for constrained convex op-

timization [6] (Chapter 3.4.3). The difference, however, is
that our set-up is distributed and the quadratic term in step
6 does not penalize the deviation of x; from the previous
iterate x;(k), but from an appropriately weighted average
z; (k). Our approach has an intuitive economic interpretation;
at every iteration k£ we penalize a consensus residual proxy
by the time-varying coefficient 1/(2¢(k)), which, due to
Assumption |4} progressively increases. This can be thought
of as a pricing settling mechanism, where the more we delay
to achieve consensus the higher the price is.

In the case where a}(k) =1/m forall i,5 =1,...,m,
for all £ > 0, that corresponds to a decentralized control
paradigm, the solution of our proximal minimization ap-
proach coincides with the one obtained when the alternating
direction of multipliers [6], [9], is applied to this problem
(see eq. (4.72)-(4.74), p. 254 in [6]). In the latter the
quadratic penalty term is not added to the local objective
function as in step 6 of Algorithm [T} but to the Lagrangian
function of an equivalent problem, and the coefficient ¢(k)
is an arbitrary constant independent of k; however, a dual-
update step is required. Formal connections between penalty
methods and the method of multipliers have been established
in [35].

III. PREPARATORY RESULTS

In this section several relations between the difference
of the agent estimates from certain average quantities are
stated. At the end of the section we provide a relation that
is fundamental for the analysis of Section

For all £ > 0, let

v(k) = %i i(k), for all k > 0. &)
_ _ 67(;33 P v
W=t ©

where e(k) = Y " dist(v(k), X;), and Z € R™, p € Ry
are as in Assumption [3| It is shown in Lemma 2 of [29] that
o(k) € N;~, X;. Note that unlike z;(k) and v(k), which do
not necessarily belong to (", X;, for (k) this is always
the case, thus providing a feasible solution of P.

For each i = 1,...,m, denote by

eilk+1) =a;(k+1) — z(k), forall k>0, (6)

the error between the values computed at steps 5 and 6 of
Algorithm i.e., the difference of the weighted average
z;(k) computed by agent ¢ at time k from its local update

A. Error relations

We provide some intermediate results that form the basis
of the relation of the next subsection.

Lemma 1: Consider the compactness condition of As-
sumption [2] and Assumption [3] For all k£ > 0,

Zl\fm(k)* k)IISMZHxi(k)*v(k)H, ©)



(2/p)ymD + 1.

The proof of Lemma |I| is given in [32]. From step 5 of
Algorithm we have that forall £ > 0, foralli =1,...,m,

where 4 =

I

<
Il
—

NE

al(k)x;(k) + e;(k + 1), (8)

<.
I
—

where the last equality follows from ().

Following [18], for each k > 0 consider a matrix A(k) €
R such that a’ (k) is the j-th element of its i-th column.
For all k, s with k > s, let ®(k,s) = A(s)A(s+1)... A(k—
1)A(k), with ®(k,k) = A(k) for all k& > 0. Denote by
[®(k, s)}; element j of column i of ®(k,s). It is then
shown in [18] that, under Assumption |5, ®(k,s) is doubly
stochastic, i.e., both its rows and columns sum up to one.
Similarly to [18], by propagating (8] in time, it can be shown
that for all k£ > s (the inequality is strict for convenience of
the subsequent derivations), for all 1 =1,...,m,

W(k+1) jf: (s)
ot
Rl

For all k > s, the last statement, together with (I9) and the
fact that ®(k, s) is a doubly stochastic matrix, leads to

(k,r+1)] ej(r—l—l)—l—ez(k—i—l) )

v(k+1) Zx]
k—1 m 1 m

+— ZZeJr+l +—> ek +1).  (10)
rsgl Jj=1

We then have the following lemma, which relates ||z;(k+
1) —v(k+1)|| to]|le;(k+1)][,i=1,...,m

Lemma 2: Consider Assumptions [5 and [§] For all k,s
with s >0, k> s, and forall i = 1,...,m,

i (k + 1) — o(k + 1)]| < A" 3 [l (5)

J=1

k—1 m
+ ZAqk_T'_l Z lle; (r + D]
ZH@ (k+1)]

where A = 2(1 + 5~(m=DT) /(1 — p(m=DT) € R, and
1
q= (1 _ 77(7rL—1)T) m=DT ¢ (07 1)

The proof of Lemma |2| follows from the proof of Lemma
4 in [36]; it can be found in [32].

+lles(k+ DI + — (an

B. A summability relation
Let N € N and consider the term

N m

2L c(k)ZHxi(k-l—l)_@(k"'l)”a

k=1 =1

(12)

where L = max;_ 1,...m L; with L; defined according to
@]) We will show that @ has an interesting relation with
Zk 5o lei(k + 1)[|%, which is used extensively in
establishing certain summability results in the next section.

Consider Lemma [I| with k£ 4 1 in place of k¥ and Lemma
summing both sides of with respect to i = 1,...,m
and setting s = 0. After some algebraic manipulations and
index changes, we have that

N
2L Zc(
k=1

<2m

m

k) ik +1) = o(k + 1)

i=1
kZHfC
N k-
+2mu)\f/zz ¢ IZHle—i—l
Nk:lr:O
+4uL Z

) llei(k + 1)1,
=1

We then have the following lemma, which is the main

result of this section.

Mz

k=1

3

13)

Lemma 3: Consider Assumptions 2ff] Fix any o; €
(0,1). We then have that for any N € N,

m

N
EZc(k)ZHIz(kJ-F 1) —o(k+1)|

<a122\|e k+1 ||2+a22 2ras, (14)
k=11i=1
where
2 o7af 242 |
= Zmpt L (m2 1),
Qa2 alm,u m 1= g7 +
- 1
—9 3 2)\2L2 0 2
a3 mop C( ) 061(1 . q)g
+ QmQuAEDc(l)li +20mD?. (15)
q

The proof of Lemma [3] involves bounding each term in

@I) by affine functions of S0 | 2™ |le;(k + 1)||2 an
S, ¢(k)?, thus resulting in (T4). See [32] for details.

I'V. CONVERGENCE, CONSENSUS AND OPTIMALITY

In this section we deal with the convergence properties of
Algorithm [T] and show that agents reach consensus to some
minimizer of P. Here for the sake of brevity, we just state
the results and briefly outline the derivation scheme. The
interested reader is referred again to [32] for detailed proofs.



A. Error convergence

We use the following result, which is proven in Lemma
4.1 in [6]. If y* = argminyecy J1(y) + J2(y) (assuming
uniqueness of the minimizer), where ¥ C R" is a convex
set, J1(+), J2(+) : R™ — R are convex functions and Jo(+) is
continuously differentiable, then y* = argminyey J1(y) +
VJao(y*) Ty, where V.Jo(y*) is the gradient of Jo(y) with
respect to y, evaluated at y*. Note that the proof of this
statement depends strongly on the convexity requirement.
Our analysis deviates from the approach adopted in [29],
[30], it is motivated by the proof of the alternating direction
method of multipliers (Proposition 4.2 in [6], Appendix A
of [9]) and relies on our proximal minimization perspective.

Consider step 6 of Algorithm [T} Under Assumption [T] and
since (1/(2¢(k)))||zi(k)—a;||? is continuously differentiable
with respect to z;, applying the previous result to this
problem with z;, X; in place of y,Y, respectively, f;(x;)
in place of J1(y) and (1/(2¢(k)))||zi(k) — x;]|* in place of
Ja2(y), we have that

) 1) = in f:
zi(k +1) = arg min f;(z

(zi(k) — zi(k + 1)) "y,
(16)

i)
1
c(k)
where in the second term of (T6), —(1/c(k))(z; (k) — z;(k+
1)), is the differential of (1/(2c(k)))||zi(k) — x;||*> with
respect to x;, evaluated at z;(k+1). Based on (I6), we then
have the following lemma, which provides a useful relation
between the consecutive algorithm iterates x;(k + 1) and

x;(k), and forms the basis for the subsequent results.

Lemma 4: Consider Assumptions and Assumption [3
We then have that for any k& € N, for any z* € X*,

m

2e(k) Y filo(k + 1) + Y [lei(k + 1|1

i=1 i=1

+ ) llzi(k+1) — 2|7
=1
<2e(k) ) fil@) + ) llwilk) —a|?
i=1 =1

+2Le(k) > [ai(k+1) = o(k + 1)|]. (17)

i=1
By manipulating as in [32], we are able to show the
following proposition.
Proposition 1: Consider Assumptions [T}f6] We have that

D 3 2k [lei(®)][? < oo,
2) limy_ o0 |les(k)|| =0, for all i =1,...,m.

B. Consensus

Under the structural assumptions and the communication
set-up imposed in Section agents reach consensus to
a common decision vector. This is formally stated in the
following proposition.

Proposition 2 (Consensus): Consider Assumptions [T}j6]
We have that

lim ||z;(k) —v(k)|| =0, foralli=1,...,m, (18)
k—o0
where, we recall,
1 m
o(k) = — > " a;(k), for all k> 0. (19)
i=1

Proposition [2| shows that consensus is reached, and for
each i = 1,...,m, as k — oo, x;(k) converges to the
arithmetic average v(k) of the agents’ estimates, as this is
given by (19). Based on the developments of Section[ITI] the
proof of Proposition 2] is similar to the proof of Lemma 4 in
[36]; it can be found in [32].

C. Convergence and optimality

We show that Algorithm [I] converges, and in particular
that the sequence {||z;(k) —z*||}, ., is convergent for any
minimizer z* € X* of P, forall i = 1,...,m.

To achieve this, notice that by the first part of Proposition
(under Assumptions [16), Y72, S [lei(k)|> < oo
Letting then N — o0 in leads to the following
summability result, which states that

2L e(k) > ik +1) —v(k+1)[| <oco.  (20)
k=1 i=1

The last statement enables us to show the following conver-

gence result [32].

Theorem 1: Consider Assumptions We have that for
all z* € X*, the sequence {||z;(k)—2*||}, ., is convergent
foralli=1,...,m. B

Theorem E] shows that Algorithm E] converges, however,
the iterates ||x; (k) —2*|| do not necessarily converge to zero,
but to some constant. The next theorem shows that for some
minimizer z* € X* of P the iterates indeed tend to zero,
ie., limg_ oo ||zi(k) — 2*]| = 0 for some z* € X*, for all
i=1,...,m. The proof can be found in [32].

Theorem 2 (Optimality): Consider Assumptions We
have that, for some z* € X*,

lzi(k) —2*|| =0, forall i =1,...,m.  (21)

lim
k—o0
Note that a direct byproduct of Proposition 2} Theorem [2]
and Lemmal[T] is that the consensus vector is some minimizer
of P, since, for some x* € X*, limy_ o ||z:(k) — 2*|| =
limg o0 [[0(k) — 2*|] = limg— oo ||0(K) — 2*||, for all i =
1,...,m. Moreover, by the definition of ¢(k) (see below
(@) we also have that limy_,o €(k) = 0. The preceding
statements imply that the sequences {v(k)}r>0, {0(k) k>0
and {z;(k)}x>0,% = 1,...,m, converge to the same element
of X*.

V. CONCLUSION

In this paper we provided a novel algorithm for dis-
tributed convex optimization over time-varying multi-agent
networks, in the presence of heterogeneous agent constraints.
A proximal minimization approach was adopted and an



iterative distributed algorithm was developed. Convergence
and optimality of this distributed scheme was shown.

Current work concentrates on three main directions: 1) In-
vestigating the convergence rate properties of the developed
algorithm, 2) Developing rolling horizon implementations,
extending the work of [37] to the case where constraints are
also present, and 3) Extending our results to the case where
a “budget” type coupling equality constraint is added to the
problem (common in resource allocation problems [38]), and
investigate the pricing implications of a distributed scheme
for such set-up.

From an application point of view, the main focus is on
applying the proposed algorithm to the problem of energy
efficient control of a building network.
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