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Abstract— We consider a finite-horizon optimal control prob-
lem for a switched affine system with controlled switches,
affected by uncertainty and subject to input and/or state
constraints. We show how the logical statements that govern
the underlying switching mechanism can be transformed into
robust mixed-integer inequalities, leading to an infinite dimen-
sional linear program with robust constraints. Following a
randomized methodology, based on enforcing the constraints
only on a finite number of uncertainty instances/scenarios, we
relax the infinite dimensional program to a mixed-integer linear
program, which is amenable to existing numerical tools. We
establish a probabilistic link between the infinite dimensional
robust program and its scenario-based relaxation, showing that
the optimal solution of the latter is feasible, in a probabilistic
sense, for the former.

I. INTRODUCTION

Switched systems have been studied extensively in the
dynamics and control literature due to their ability to capture
the behavior of complex dynamical systems like those arising
in ground transportation [1], [2], air traffic management [3],
[4] and smart grid applications [5]. Such systems involve
switching among different modes of operation, where at each
mode the system evolves continuously. A formal analysis
for various classes of switched dynamical systems (hybrid
systems at their full level of generality), covering aspects
ranging form stability and controller synthesis to verification,
can be found in [6–8].

The interplay between continuous evolution and the under-
lying switching mechanism renders the analysis and control
of general switched systems challenging. However, certain
classes of switched systems admit tractable reformulations,
allowing the use of existing numerical tools for analysis
and controller synthesis. Discrete-time, switched systems
with affine continuous dynamics at each mode of operation
exhibit a prominent role among such problem classes. This
is due to the fact that they can approximate the evolution of
systems with nonlinear dynamics, and it has been shown that
such systems are equivalent with mixed logical dynamical
systems, for which efficient analysis and synthesis tools have
been developed [9], [10].
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In the deterministic case, and due to the equivalence
between switched affine systems and mixed logical dynami-
cal systems, optimal control and verification problems for
switched systems with affine dynamics can be recast as
mixed integer optimization programs [9], [11], [12]. The
discrete variables are introduced to encode the logical impli-
cations that are inherent in the switching mechanism. In the
case, however, where the continuous dynamics are stochastic
(i.e. they are affected by uncertainty), optimal control of
stochastic switched systems becomes a more challenging
task. From a verification point of view, typically under a
reachability objective, significant contributions have been
made [13], [14]. From an optimal control perspective, and
in the case where uncertainty has a bounded support, an
approach based on dynamic programming has been proposed
in [15], [16]. If uncertainty is of unbounded support, but
follows a Gaussian distribution, the authors of [17] follow
a linear quadratic gaussian (LQG) based control procedure,
whereas in [18] an algorithm based on semidefinite program-
ming is proposed. However, these approaches do not capture
the case where constraints on the state of the underlying
dynamical system are imposed. Therefore, optimal control
problems for switched affine systems affected by a possibly
unbounded uncertainty, while taking state constraints into
account, requires additional investigation.

In this paper we deal with the problem of finite-horizon
optimal control of switched systems with affine dynamics,
affected by uncertainty and subject to input and/or state
constraints. Our contributions can be summarized as follows:
1) We focus on the case where switches are not autonomous
but controlled, and extend the work of [9], showing how
the logical statements that govern the underlying switching
mechanism can be transformed into robust mixed-integer
inequalities, capturing the case where possibly different
input and/or state constraints per mode of operation may be
present. We formulate the problem as an infinite dimensional
linear program subject to robust constraints. 2) We relax the
resulting program by means of a randomized methodology,
that is based on enforcing the constraints only on a finite
number of uncertainty instances, referred to as scenarios
[19–22], rendering it a mixed-integer linear program that
is amenable to existing numerical tools. Since the infinite
dimensional program involved optimizing over functions, we
employ the recent results of [23], appropriately extended to
account for the presence of discrete variables, and establish
a probabilistic link between this problem and its scenario-
based relaxation. In particular, we show that the optimal
control sequence calculated on the basis of a certain set of



scenarios is feasible, in a probabilistic sense, for the infinite
dimensional robust program.

The paper is structured as follows. In Section II we
introduce the class of stochastic switched affine systems
under consideration and show how logical statements can
be transformed into robust mixed-integer inequalities. In
Section III we formulate an optimal control problem, relax
it by means of a scenario-based methodology and establish
a probabilistic link between these two problems. Finally
Section IV concludes the paper and provides some directions
for future work.

II. SWITCHED SYSTEM

A. Dynamics and constraints

We consider a discrete-time, switched affine system af-
fected by uncertainty. To this end, fix m ∈ N, and for any
time instance k ∈ N, for all i = 1, . . . ,m, let

zik = 1 ⇒
xk+1 = Ai

k(wk)xk +Bi
k(wk)uk + vik(wk), (1)

with
m∑
i=1

zik = 1. (2)

For every time instance k, xk ∈ Rnx is the state vector, uk ∈
Rnu is the control input vector and wk ∈ Wk ⊆ Rnw is an
uncertainty vector that encodes stochastic disturbances that
may affect the system. Variables zik ∈ {0, 1}, i = 1, . . . ,m,
are binary valued control variables and (2) ensures that, at
every time instance k, exactly one of them takes the value
1. Since some components of vik(·) : Wk → Rnx may
include constants, (1) represents the evolution of a switched
affine system, where switches are controlled by the choice
of the binary variables, which can be thought of as discrete
inputs. The system matrices are of appropriate dimension,
i.e. for each k, for all i = 1, . . . ,m, for all wk ∈ Wk,
Ai

k(wk) ∈ Rnx×nx and Bi
k(wk) ∈ Rnx×nu , where it is to

be understood that the elements of Ai
k(wk) and Bi

k(wk) are
functions of wk.

By (1), according to the choice of zik a different set of
dynamics is enabled. We say that at time k the system
operates at mode i if the i-th set of dynamics is active, i.e.
if zik = 1. At each mode of operation the state and input of
the system may be subject to different physical and/or tech-
nological constraints. For each k, let W−→

k
=W0× . . .×Wk,

and denote by w−→
k

=
(
w0, . . . , wk

)
∈ W−→

k
the collection

of all uncertainty vectors up to time k. Similarly, we write
u−→

k
∈ R(k+1)nu and zi−→

k
∈ {0, 1}k+1, i = 1, . . . ,m, for the

continuous and discrete control inputs, respectively. For each
k, and for all i = 1, . . . ,m, the state and input constraints
can be encoded by the following logical implication:

zik = 1 ⇒
f ik(xk, uk, wk) ≤ 0, for all w−→

k
∈W−→

k
, (3)

where f ik(·, ·, ·) : Rnx × Rnu × Wk → R. The subscript
(superscript) k (i) in f ik is introduced to encode the fact that

the system constraints may be different according to the time
instance k (the mode i). For simplicity, a single constraint
is considered. In case of multiple constraints, f ik(·, ·, ·) can
be taken to be the maximum among all involved constraint
functions; however, according to the subsequent analysis,
we would need to introduce a different number of integer
variables per constraint. The constraint in (3) is a robust
constraint. Since xk depends on u−−→

k−1, zi−−→
k−1

, i = 1, . . . ,m,
and w−−→

k−1 due to the recursion in (1), f ik(xk, uk, wk) ≤ 0
should be satisfied not only for all wk ∈ Wk, but for all
w−→

k
∈W−→

k
, i.e. for all wj ∈Wj , j = 0, . . . , k.

We impose the following assumption:
Assumption 1: For each k ∈ N, for all i = 1, . . . ,m,

f ik(·, ·, ·) : Rnx × Rnu × Wk → R is jointly affine
with respect to its first two arguments and continuous with
respect to its last one. Moreover, Ai

k(·) : Wk → Rnx×nx ,
Bi

k(·) : Wk → Rnx×nu and vik(·) : Wk → Rnx are
continuous (elementwise) with respect to their argument.

Assumption 1 requires the constraint functions to be
jointly affine with respect to state and continuous input
vectors (hence also continuous), but allows for an arbi-
trary dependence (apart from continuity) with respect to the
uncertainty. This is also the case for the dependency of
the system dynamics with respect to the uncertainty. The
affine structure is needed to facilitate the development of
a tractable optimization program in Section III, whereas the
continuity assumption is a technical requirement needed only
to guarantee existence of the optimizers in problems (6),
(10) and (11) of the next subsections. Note that we do
not impose additional structure on the dependence of the
constraint functions with respect to the uncertainty, since
this is treated as parameter in the scenario-based approach
adopted in Section III-B.

The switching mechanism encoded by (1)-(3) captures a
wide class of problem structures, however, the implication
in (3) is only one directional (⇒); this allows us to capture
controlled switches and encode different constraints per
mode of operation, but excludes systems with switches that
are triggered autonomously when the state of the system
enters a certain partition of the space. This would require the
opposite implication (⇐) in (3) to be also valid. The analysis
of Section II-B, however, is not applicable in such cases,
since it is not straightforward how to reformulate such an
implication in a form that can be amenable to computational
tools.

B. Reformulating logical implications to mixed-integer
equalities/inequalities

Consider first the switched system dynamics in (1). It can
be easily observed that, for each k, and due to (2), (1) can
be equivalently written as

xk+1 =

m∑
i=1

(
Ai

k(wk)xk +Bi
k(wk)uk + vik(wk)

)
zik. (4)

We will now reformulate the logical implication in (3) to a
robust, mixed-integer constraint. To this end, we follow the
procedure outlined in [9], to equivalently represent logical



statements by mixed-integer inequalities. We impose the
following assumption.

Assumption 2: For each k ∈ N, for all i = 1, . . . ,m, the
set

Ci
k =

{
(x, u, w) ∈ Rnx × Rnu ×Wk :

f ik(x, u, w) ≤ 0
}
, (5)

is non-empty and compact.
For each k, for all i = 1, . . . ,m, let M i

k ∈ R denote
the maximum value f ik(x, u, w) can achieve over (x, u, w) ∈⋃m

i=1 C
i
k, i.e. over all possible values that (x, u, w) may take

irrespective of the mode that is active at time k. This is given
by means of the following optimization problem

M i
k = max

(x,u,w)∈
⋃m

i=1 Ci
k

f ik(x, u, w). (6)

Under Assumptions 1 and 2, M i
k exists and is finite (max-

imum of a continuous function over a compact domain).
However, problem (6) may be difficult to solve in practice
since it requires maximizing a possibly non-concave (with
respect to w) function over a compact, under Assumption
2, domain of arbitrary geometry. Its solution can be thus
computed only in particular cases, e.g., when

⋃m
i=1 C

i
k is a

polytope or ellipsoid, and f ik(·, ·, ·) is concave with respect
to its last argument (it is affine with respect to x, u under
Assumption 1). A viable alternative that is often used in
practice is to set M i

k ∈ R to a very large constant, chosen
such that max(x,u,w)∈

⋃m
i=1 Ci

k
f ik(x, u, w) ≤ M i

k for all i =
1, . . . ,m, and for each k.

By [9] (Section 2), we then have that for each k, for all
i = 1, . . . ,m, (3) is equivalent to

f ik(xk, uk, wk) ≤M i
k(1− zik),

for all w−→
k
∈W−→

k
, (7)

The equivalence between (3) and (7) can be seen by in-
specting that zik = 1 in (7) implies that f ik(xk, uk, wk) ≤ 0,
whereas if zik = 0 we have that f ik(xk, uk, wk) ≤M i

k for all
w−→

k
∈W−→

k
, which, by the definition of M i

k is satisfied for all
admissible values of xk, uk, so no additional constraints are
imposed. The reformulation in (7) serves then as a big-M
type of procedure.

Under Assumptions 1 and 2, the logical implications in
(1), (3), are equivalent to the mixed integer equality (4) and
inequality (7), respectively. However, (4) involves bilinear
terms that impose the following challenge: If, by propagating
(4) in time, x(k) is written as a function of the initial state x0,
u−−→
k−1, zi−−→

k−1
, i = 1, . . . ,m, and w−−→

k−1, and is substituted in
(7), the resulting constraint would no longer be affine with
respect to u−−→

k−1. The latter would raise tractability issues
when formulating the optimization program of Section III.
In view of this, we show how this problem can be alleviated
in the next subsection.

C. Dealing with bilinear terms

Due to the fact that the bilinear terms in (4) do not
involve products between the state and the continuous input

variables, (4) can be equivalently written in a form that
does not include such terms. To this end, for each k, for
all i = 1, . . . ,m, consider a function yik(·) : W−→

k
→ Rnx

such that for all w−→
k
∈W−→

k
,

yik(w−→k ) =
(
Ai

k(wk)xk +Bi
k(wk)uk + vik(wk)

)
zik, (8)

where the dependency of yik(·) on the entire uncertainty
history w−→

k
and not only on wk is due to xk.

Following the analysis of [9] (Section 3), (8) can be equiv-
alently represented by the following set of robust constraints.
For each k, for all i = 1, . . . ,m, and for all w−→

k
∈W−→

k
,

yik(w−→k ) ≤M
i

kz
i
k,

yik(w−→k ) ≥M
i
kz

i
k,

yik(w−→k ) ≤ A
i
k(wk)xk +Bi

k(wk)uk + vik(wk)

−M i
k(1− zik),

yik(w−→k ) ≥ A
i
k(wk)xk +Bi

k(wk)uk + vik(wk)

−M i

k(1− zik). (9)

For each k, for all i = 1, . . . ,m, M
i

k =

(M
i

k,1, . . . ,M
i

k,nx
) ∈ Rnx , M i

k = (M i
k,1, . . . ,M

i
k,nx

) ∈
Rnx . For j = 1, . . . , nx, M

i

k,j ,M
i
k,j ∈ R, denote

the worst-case maximum and minimum value that
Ai

k,j(w)xk + Bi
k,j(w)uk + vik,j(w) can achieve over

(x, u, w) ∈
⋃m

i=1 C
i
k, where Ai

k,j(w), B
i
k,j(w), v

i
k,j(w),

denote the j-th row of Ai
k(w), B

i
k(w) and vik(w),

respectively. For j = 1, . . . , nx, they are given by
means of the following optimization problems

M
i

k,j = max
(x,u,w)∈

⋃m
i=1 Ci

k

Ai
k,j(w)x+Bi

k,j(w)u+ vik,j(w),

(10)

M i
k,j = min

(x,u,w)∈
⋃m

i=1 Ci
k

Ai
k,j(w)x+Bi

k,j(w)u+ vik,j(w).

(11)

Under Assumption 2, for all j = 1, . . . , nx, M
i

k,j ,M
i
k,j

exist and are finite. However, as with M i
k, determining them

by means of the aforementioned optimization programs may
be computationally challenging, apart form particular cases
(e.g., when

⋃m
i=1 C

i
k is a polytope or ellipsoid). In practice,

for each k, for all i = 1, . . . ,m, for all j = 1, . . . , nx,
M

i

k,j is typically set to a large constant, chosen such that
max(x,u,w)∈

⋃m
i=1 Ci

k
Ai

k,j(w)x+B
i
k,j(w)u+v

i
k,j(w) ≤M

i

k,j .
M i

k,j is chosen analogously.
The equivalence between (8) and (9) can be seen by

inspecting that if zik = 1, the last two constraints in (9) imply
that yik(w−→k ) = Ai

k(wk)xk + Bi
k(wk)uk + vik(wk), and the

first two that M i
k ≤ yik(w−→k ) = Ai

k(wk)xk + Bi
k(wk)uk +

vik(wk) ≤ M
i

k. The latter is trivially satisfied by the defini-
tion of M

i

k,M
i
k, since for each k, (xk, uk, wk) ∈

⋃m
i=1 C

i
k.

Under a similar reasoning, if zik = 0, the first two constraints
in (9) imply that yik(w−→k ) = 0 (hence the contribution of the
corresponding term in (4) is zero), and, as a result, the last
two lead to M i

k ≤ Ai
k(wk)xk+B

i
k(wk)uk+v

i
k(wk) ≤M

i

k,



which is trivially satisfied over
⋃m

i=1 C
i
k by the definition of

M
i

k,M
i
k.

Under the assignment in (8), and due to (4),

xk+1 =

m∑
i=1

yik(w−→k ). (12)

By means of (12), substitute xk in (7) and (9). Notice that,
under Assumption 1, for each k, for all i = 1, . . . ,m, the
constraints in (7) and (9) would have an affine dependence
with respect to uk, zik, yik(w−→k ) and

{
yik−1(w−−→k−1)}

m
i=1.

III. OPTIMAL CONTROL PROBLEM

A. Problem set-up

Let T ∈ N+ be a finite time horizon. By appropriately
choosing the continuous control inputs u−−→

T−1 and by switch-
ing among the m modes of operation over the horizon
T via the discrete inputs zi−−→

T−1
, i = 1, . . . ,m, we seek

to optimize a certain performance criterion subject to the
switching mechanism (1)-(3), with k = 0, . . . , T − 1.

It was shown in Sections II-B and II-C that for all
k = 0, . . . , T − 1, for all i = 1, . . . ,m, (1) and (3)
are equivalent to (12) and (7), respectively. Due to this
equivalence, the switching mechanism can be encoded by
(2), (7) and (9), which due to (12) depend on uk, wk, zik,
yik(w−→k ) and

{
yik−1(w−−→k−1)}

m
i=1 (see also discussion at the

end of Section II-C). Collecting then all these constraints
for all k = 0, . . . , T − 1, and for all i = 1, . . . ,m, and after
some algebraic rearrangements, we can compactly represent
them by

g(u, z, y(w), w) ≤ 0, for all w ∈W (13)

where W = W−−→
T−1, u = u−−→

T−1 ∈ RTnu , w =

w−−→
T−1 ∈ W and z =

(
z1−−→
T−1

, . . . , zm−−→
T−1

)
∈ {0, 1}mT .

The function y(·) : W → RmTnx is such that, for all
w ∈ W, y(w) =

(
y1(w), . . . , ym(w)

)
, where yi(w) =(

yi0(w−→0 ), . . . , y
i
T−1(w−−→T−1)

)
∈ RTnx , i = 1, . . . ,m. Note

that under Assumption 1, and due to the fact that bilinearities
were resolved in Section II-C, g(u, z, y(w), w) is affine with
respect to its first three arguments, whereas its dependence
on w is arbitrary.

Let c =
(
c0, . . . , cT−1

)
∈ RTnu , where ck ∈ Rnu ,

k = 0, . . . , T − 1, and consider the following finite-horizon
optimization program.

PW : min
u∈RTnu ,z∈{0,1}mT ,

y(·): W→RmTnx

c>u (14)

subject to
g(u, z, y(w), w) ≤ 0, for all w ∈W. (15)

The subscript W in PW is introduced to emphasize the
presence of robust constraints. The fact that a linear objective
function involving only the continuous control inputs is
considered is without loss of generality. A more general
objective function (e.g., worst-case performance metric with
respect to the uncertainty) could be recast in this framework

by means of an epigraphic reformulation. Note that by appro-
priately selecting f iT−1(·, ·, ·) (incorporated in the definition
of g(·, ·, ·, ·)) so that it depends on xT = Ai

T−1xT−1 +
Bi

T−1uT−1 + viT−1(wT−1), a terminal state constraint can
be imposed.

Problem PW is a robust, mixed-integer linear program.
There are, however, two main difficulties that prevent PW
from being amenable to existing numerical tools. The first
refers to the fact that it is an infinite dimensional optimization
program since it involves optimizing over functions y(·).
The second is the fact that the constraints in (15) should
be robustly satisfied for the different values uncertainty may
take in W. However, the set W may not be known explicitly
(e.g., only historical data for w may be available), or, if
known, it may be a continuous set, thus imposing tractability
challenges. In the next subsections we show how to overcome
these difficulties by exploiting scenario-based optimization
[19], [20], [22].

B. Scenario-based relaxation

To deal with the robust constraint in P̃W, we propose
a scenario-based relaxation [19], [20]. Consider first the
following optimization program

P̃W : min
u∈RTnu ,z∈{0,1}mT

c>u (16)

subject to
min

ỹ∈RmTnx
g(u, z, ỹ, w) ≤ 0, for all w ∈W. (17)

It can be easily seen that problems PW and P̃W are equivalent
in the sense that they admit the same solutions for u, z and
the same optimal objective value. Compared to PW, P̃W is
not an easier problem since it is not amenable to numerical
tools due to the robust minimization problem that effectively
appears in the constraints. An alternative interpretation for
the constraint in (17) is that for all w ∈W, there exists ỹ ∈
RmTnx , such that g(u, z, ỹ, w) ≤ 0; in PW this is captured
by the fact that the valuation y(w) is different per w ∈W.

We consider a scenario-based relaxation of P̃W, where
instead of enforcing the constraints for all values of w in
W , we enforce them only on N realizations/scenarios of
the uncertainty. Let

(
w(1), . . . , w(N)

)
∈WN be a vector of

N identically and independently distributed (i.i.d.) scenarios
w(j), j = 1, . . . , N , of the uncertainty. For each j =
1, . . . , N , we introduce a different decision vector ỹ(j) ∈
RmTnx , and consider the following optimization program.

P̃N : min
u∈RTnu ,z∈{0,1}mT

c>u (18)

subject to

min
ỹ(j)∈RmTnx

g(u, z, ỹ(j), w(j)) ≤ 0,

for all j = 1, . . . , N. (19)

Problem P̃N is equivalent to the following minimization
program, where the minimization in the constraint (19) is



lifted in the objective (see (20) below).

PN : min
u∈RTnu ,z∈{0,1}mT ,{

ỹ(j)∈RmTnx
}N

j=1

c>u (20)

subject to

g(u, z, ỹ(j), w(j)) ≤ 0, for all j = 1, . . . , N. (21)

The subscript N in P̃N , PN is introduced to emphasize the
dependency on the uncertainty scenarios. Due to the fact that
g(u, z, ỹ(j), w(j)), j = 1, . . . , N , is affine with respect to the
decision variables, PN is a mixed-integer linear program. As
a byproduct of the scenario-based methodology, in contrast
to PW, PN not only has a finite number of constraints, but
also a finite number of decision variables. In particular, it
is no longer required to optimize over functions y(·), but
we need to introduce the additional decision vector ỹ(j) per
scenario of the uncertainty. The computational limitation of
this scenario-based approach is that not only the number of
constraints, but also the number of decision variables grows
linearly with the number of scenarios.

C. Connection between PN and PW

Problem PN falls in the framework of [23] and could
be thought of as a scenario program with certificates. In
fact, we refer to variables ỹ(j) ∈ RmTnx , j = 1, . . . , N ,
as certificates, since, unlike u and z, we are not interested
in their specific value, but it suffices that one set of such
variables that satisfies (21) exists. This can be also seem from
the equivalence between P̃N and PN , and explains why ỹ(j),
j = 1, . . . , N , are treated differently from the other decision
variables in the derivations below. We impose the following
assumption.

Assumption 3: For any set
{
w(1), . . . , w(N)

}
⊂ W of N

i.i.d. scenarios of w ∈ W, PN has a non-empty feasibility
region and its minimizer exists and is unique.

A direct consequence of Assumption 3 is that for PN

to have a non-empty feasibility region, W should not be
unbounded. The uniqueness part of Assumption 3 can be
relaxed as shown in [20], e.g., by using a deterministic tie-
break rule in case of multiple solutions. Let W be endowed
with a σ-algebra and assume that w ∈ W is distributed
according to some fixed, but possibly unknown probability
distribution P, defined over this σ-algebra. Denote by PN

the corresponding product measure.
Denote by u∗N and z∗N the minimizers of PN , as far

as the u and z variables are concerned. The subscript N
is introduced to emphasize the fact that these minimizers
depend on the N scenarios used to formulate PN , and will be
different if another set of N scenarios is considered instead.
We then have the following proposition, which is in line with
the proof of Theorem 1 in [23], and relies on Theorem 1 of
[20], modified to account for the presence of binary variables
using the results in [24], [25].

Proposition 1: Consider Assumptions 1-3. Fix ε ∈ (0, 1),
consider {w(j)}Nj=1 and formulate PN . With confidence at
least 1 − 2mT

∑mTnu−1
k=0

(
N
k

)
εk(1 − ε)N−k, the minimizers

u∗N and z∗N of PN are feasible for P̃W with probability at
least 1− ε, i.e.

PN
{(
w(1), . . . , w(N)

)
∈WN :

P
{
w ∈W : min

ỹ∈RmTnx
g(u∗N , z

∗
N , ỹ, w) ≤ 0

}
≥ 1− ε

}
≥ 1− 2mT

mTnu−1∑
k=0

(
N

k

)
εk(1− ε)N−k. (22)

Proof: The constraint function
minỹ∈RmTnx g(u, z, ỹ, w) in (17) is convex (in fact it
is affine due to Assumption 1) with respect to the u
variables. This follows from the fact that g(u, z, ỹ, w) is
jointly convex with respect to u and ỹ, and minimizing only
over ỹ in (17) preserves convexity with respect to u [26]
(Chapter 3.2.5, p. 87).

Therefore, P̃W is a robust, mixed-integer program, with
a constraint function that is convex with respect to the
continuous decision variables, and P̃N is a scenario pro-
gram corresponding to P̃W. Under Assumption 3, the result
follows then directly by Theorem 3 of [24] (or equivalently
Theorem 4.1 in [25]), according to which we have that, with
confidence at least 1−2mT

∑mTnu−1
k=0

(
N
k

)
εk(1−ε)N−k, the

minimizers u∗N and z∗N of PN (and hence also of P̃N ) are
feasible for P̃W with probability at least 1−ε. The statement
follows then from the equivalence between P̃N and PN .

Proposition 1 shows that with certain confidence, the so-
lution generated by the scenario-based optimization program
PN is feasible for P̃W, apart from a set with measure at most
ε. The latter, due to the equivalence between P̃W and PW
(see also discussion below P̃W), establishes a probabilistic
link between PN and PW.

Note that Proposition 1 can be also interpreted as follows.
Fix β ∈ (0, 1) and choose N such that

2mT
mTnu−1∑

k=0

(
N

k

)
εk(1− ε)N−k ≤ β. (23)

We then have that with confidence at least 1 − β, u∗N and
z∗N are feasible for P̃W with probability at least 1 − ε.
We are interested in determining the minimum value of
N ∈ N that satisfies (23) since this would lead to an
optimization program with fewer constraints and decision
variables. This can be computed by means of (23) via
numerical inversion (e.g., using bisection). An explicit, albeit
conservative, expression to compute N is given by

N ≥ e

e− 1

1

ε

(
mTnu − 1 +mT ln

1

β

)
. (24)

The reader is referred to [24] (Theorem 3, Corollary 3),
for more details on its derivation. In [24], however, (24)
appears with 2 in place of e/(e−1); the refinement of using
e/(e−1) instead is due to [27], [28]. Note that the presence
of the term 2mT in front of the summation in (23) dictates
the number of possible binary combinations that may occur.
This term would not be present if we only had continuous
decision variables. In (24), we have the term mT in front
of the logarithm since ln(2mT /β) = mT ln(1/β); see also



[25] for a detailed discussion on this issue. Note that (24) is
linear with respect to the decision variables (both continuous
and discrete) and grows logarithmically with respect to β.
The latter implies that β can be set to very low values (i.e.
we can claim the feasibility result of Proposition 1 with
high confidence), without an unaffordable increase in N ,
and hence in the computational complexity of the resulting
optimization program.

The number mTnu of continuous decision variables that
appears in (23), (24), upper-bounds the number of support
constraints for P̃N , a notion which is at the basis of the
scenario approach theory [19], [20] (see [19] (Definition 4)
for a formal definition of the support constraints). Using the
results of [29], in certain cases tighter upper-bounds can be
obtained, leading to tighter sample size bounds for N .

IV. CONCLUDING REMARKS

In this paper we formulated a finite-horizon optimal con-
trol problem for a switched affine system with controlled
switches, affected by uncertainty with a possibly unbounded
support, and subject to input and/or state constraints. It was
shown how to reformulate the logical statements at the basis
of the switching mechanism to robust mixed-integer inequal-
ities, resulting into an infinite dimensional linear program
with robust constraints. The latter was relaxed by means of
a randomized methodology, that was based on enforcing the
constraints only on a finite number of uncertainty scenarios.
It was then shown that the optimal solution of the resulting
scenario program is feasible, in a probabilistic sense, for the
infinite dimensional robust program.

Current work concentrates on extending the developed
framework to capture the case where switches may be
triggered autonomously when entering a certain partition
of the state space. Moreover, we investigate the possibility
of employing difference performance criteria, based on the
expected value or some other risk metric of an objective func-
tion. From an application point of view, we investigate the
potential of applying the developed methodology to extend
the deterministic microgrid energy management problem of
[5], [30] to the case where stochastic uncertainty is present.
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