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Abstract— The goal of this paper is to introduce a com-
positional modeling framework for the energy management
of a smart grid that operates connected to the main grid.
The focus is on the cooling of a district network composed
of multiple buildings that possibly share resources such as
storages, chillers, combined heat and power units, and renew-
able power generators. We adopt a modular perspective where
components are described in terms of energy fluxes and interact
by exchanging energy. Model dimension and complexity depend
on the number and type of components that are present in the
specific configuration. Energy management problems like the
minimization of the electrical energy cost or the tracking of
some electrical energy profile can be addressed in the proposed
framework via different control strategies and architectures.

I. INTRODUCTION

In this paper we propose a compositional framework for
modeling a smart grid to the purpose of efficient energy
management. A smart grid is a subpart of the grid, with
both, generators and loads, and, in principle, can be operated
autonomously in island mode. Here, we consider the case
when it is connected to the main grid and relies on it
for balancing possible mismatches between electrical energy
production and consumption. In this setting, stability is not
a concern at the smart grid level, and energy management
reduces to the task of satisfying the energy requests within
the smart grid while optimizing the electrical energy ex-
changes with the main grid. If the goal is reducing the
electrical energy cost, then, this can be achieved e.g. by
using devices at their highest efficiency operating conditions,
and shifting the energy request to the main grid to hours
where prices are lower by means of storage systems and
smart appliances. Smart grids can also contribute to ease the
integration of renewable energy production and distributed
energy generation in the main grid, since they can smooth
out the high variability of the renewable energy production
by implementing appropriate energy management strategies.

Motivated by the high consumption of electric energy in
buildings (40% of the overall electricity usage in US is
due to buildings with almost a half of this fraction used
for cooling, heating, and air conditioning, [1]), we shall
focus on the cooling of a district network. The network is
composed of multiple buildings possibly sharing resources
such as storages, chillers, combined heat and power units,
and renewable power generators like wind turbines. We adopt
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a modular perspective oriented to the energy management of
the district. Different components are described in terms of
thermal/electrical energy fluxes and interact by exchanging
energy, with the overall balance of thermal and electrical
energy in the district network equal to zero. Related work is
described in [2], where the focus is only on modeling and
control of a building. The proposed model for the building
is bilinear and not easily integrable with that of other smart
grid components.

Our modeling framework includes control inputs and
stochastic disturbances. Inputs and state variables have both
a discrete and a continuous component so that the overall
model is a Stochastic Hybrid System (SHS), [3]. In this
setting, one can address energy management problems like
the minimization of the cost of the electrical energy requested
to the main grid or the tracking of some given electrical
energy exchange profile that was agreed with the main
grid according to a demand-response strategy. The district
network in the latter case can be viewed as a user that ac-
tively participates to the electrical energy demand/generation
balance of the overall grid, and, hence, to its stabilization.
Thermal storage systems can be particularly useful in this
respect since they can serve the twofold purpose of making
devices work close to their highest efficiency conditions, thus
reducing the electrical energy consumption, and shifting in
time the electrical energy request from the main grid, see
e.g. [4], [5], [6], [7] for more details. Also the “building
thermal mass” can be beneficially exploited as a passive
thermal storage to add further flexibility to the system, [8],
[9], [10].

II. DISTRICT NETWORK COMPONENTS

We adopt a modular and control perspective, oriented to
the energy management of the district network along some
finite time horizon [ti, tf ]. To this purpose, we divide [ti, tf ]
into M time slots of duration δt, and provide the contribution
per time slot in terms of energy requested/provided or energy
conversion of each component of the district network. Com-
ponents can then be combined via energy balance equations.
Some of the inputs are left free and can be set, e.g., to
minimize the electrical energy costs.

A. Building

Consider a building composed of nz zones, each one with
its own temperature profile Tz,j , j = 1, . . . , nz , to track. We
can then define the temperature profile of the building as
Tz = [Tz,1 · · ·Tz,nz

]>. The building cooling energy demand
for tracking Tz along the discretized time horizon [ti, tf ]
is given by the cooling energy request during the k-th time
slot, namely Ec(k), summed up over all the M time slots:



Ec =
∑M
k=1Ec(k) =

∑M
k=1

∑nz

j=1Ec,j(k), where Ec,j(k)
is the energy request of zone j during the k-th slot and is
the sum of four contributions, namely

Ec,j(k) = Ew,j(k) + Ep,j(k) + Eint,j(k) + Ez,j(k). (1)

Ew,j in (1) is the amount of energy exchanged between
the walls and zone j, Ep,j and Eint,j is the heat produced
respectively by people and by other sources of heat inside
zone j, and Ez,j is the energy contribution of the thermal
inertia of zone j. We shall show next that the energy
contributions in (1) are affine as a function of Tz . This is
particularly convenient if Tz is taken as control input to be
set, e.g., for energy cost minimization.

1) Wall-zone energy exchange Ew: The building is com-
posed of zones that are separated through walls one from
the other, and from the outside ambient as well. Each wall
can be modeled as the composition of one-dimensional finite
volumes by dividing it into vertical layers (‘slices’) that
differ in width and material composition. The area of each
slice coincides with the wall area and each slice is assumed
to have a uniform density and a uniform temperature. The
heat flow is perpendicular to the surface of the slice: each
internal slice exchanges heat only with nearby slices through
conduction, whilst boundary slices also exchange heat via
convection and thermal radiation through surfaces that are
exposed towards either a zone or the outside of the building.
Based on the assumption that external surfaces are grey and
opaque, with zero transmittance and equal absorbance and
emissivity to shortwave and longwave radiation, in [10], the
following expression for the thermal energy exchanged by
the building structure to each thermal zone is derived: Ew =
F̃ x(0) + G̃u + H̃w, where Ew = [E>w (1) · · ·E>w (M)]>,
x(0) is the initial condition of a suitably defined state vector,
u = [u>(0) · · ·u>(M)]> is the input vector with u(k) =
Tz(kδt), and W = [W>

1 · · ·W>
nw

]> is the disturbance vec-
tor with w(k) = d(kδt), where d = [To Q

S QL 1]> collects
the outdoor temperature To, and the incoming shortwave QS
and longwave QL radiations. The last entry in d is introduced
to account for the presence of an affine term.

2) People energy contribution Ep: Occupancy implies
heat production and, in crowded places, it is a relevant contri-
bution to heat generation. The heat power Qp,j produced by
np,j occupants in zone j at temperature Tz,j is obtained as
the product of np,j and a quadratic function of Tz,j ([11]).
Since such a function is almost linear in a sensible range
of operating temperatures, it can be linearized around some
comfort temperature T̄z,j , thus obtaining:

Qp,j = np,j(p1Tz,j + p0), (2)

where p1 and p2 are suitable coefficients. Since Tz,j is
assumed to be linear within each time slot, if also np,j is
approximated by a linear function of time as suggested in
[7], then, equation (2) can be analytically integrated within
[(k−1)δt, kδt] to obtain the people energy contribution to the
heating of zone j: Ep,j(k) = q2,kTz,j(kδt) + q1,kTz,j((k −
1)δt) + q0,k, where the coefficients q0,k, q1,k, and q2,k are
functions of np,j at time (k − 1)δt and kδt ([10]). The
energy transferred to all zones in each time slot can be
collected in Ep(k) = [Ep,1(k) · · ·Ep,nz

(k)]>. Then, Ep =

[E>p (1) · · ·E>p (M)]> is given by Ep = N(np)u + e(np),
where N(np) and e(np) depend on the coefficients in (2)
and np is a vector of the occupancies in all zones of the
building along the whole time horizon.

3) Other internal energy contributions Eint: There are
many other types of heat sources that may affect the internal
energy of a building, e.g. internal lighting, electrical equip-
ment, daylight radiation through windows, etc. The overall
heat flow rate transferred to zone j can be expressed as

Qint,j(t) = αj(t)Q
S(t) + κjIR+

(np,j(t)) + λj , (3)

where αj(t) is a coefficient that takes into account the
mean absorbance coefficient of zone j, the transmittance
coefficients of the windows and their areas, sun view and
shading factors, and radiation incidence angle. The thermal
energy contribution to zone j due to internal lightening and
electrical equipment is composed of two contributions: a
constant term λj , and an additional therm κj that represents
the change in internal lightening and electrical equipment
when people are present. IR+

(·) denote the indicator function
on the positive real values. Note that Qint,j does not depend
on the longwave radiation because windows are usually
shielded against it. (3) can be discretized and integrated in
order to obtain the energy Eint,j(k) during the k-th slot. We
can collect the thermal energies of the zones in a vector
Eint(k) = [Eint,1(k) · · ·Eint,nz (k)]>, and, finally, define
Eint = [E>int(1) · · ·E>int(M)]>.

4) Zones energy contributions Ez: Observe that in order
to lower the temperature of a zone we need to draw energy
from the zone itself. This contribution to the overall thermal
energy (1) in the building can be expressed as

Ez,j(k) = −Cz,j(Tz,j(kδt)− Tz,j((k − 1)δt)), (4)

where Cz,j is the equivalent heat capacity of the j-th zone.
To account for all time slots and all zones in the building,
we can define Ez = [E>z (1) · · ·E>z (M)]> where Ez(k) =
[Ez,1(k) · · ·Ez,nz

(k)]> and derive Ez = Zu + z from (4),
where Z and z are suitably defined matrix and vector.

B. Chiller plant
A chiller plant converts electrical energy into cooling

energy, which is then transferred to the building via, e.g.,
the chilled water circuit. Chillers can be modeled through:

Ech,` =
a1ToTcwδt + a2(To − Tcw)δt + a4ToEch,c

Tcw − a3
δt
Ech,c

−Ech,c,

(5)
where Ech,` is the electrical energy absorbed by the chiller
in order to provide the cooling energy Ech,c in a time slot
of duration δt. Note that Ech,` depends also on the outdoor
temperature To and the temperature of the cooling water
Tcw. The latter is typically regulated by low level controllers
so that it is maintained almost at some prescribed optimal
operational value. The chiller description (5) is derived
from the original Ng-Gordon model [12] which is based
on entropy and energy balance equations. Coefficients a1,
a2, a3, a4 characterize the chiller performance. Depending
on their values, we can have different efficiency curves as
given by the so-called Coefficient Of Performance (COP),
i.e., the ratio between the produced cooling energy and the
corresponding electrical energy consumption.



1) Chiller approximation: A convex biquadratic approx-
imation Ech,` = c1(To)Eeps

4
ch,c + c2(To)E

2
ch,c + c3(To) of

the nonlinear Ng-Gordon model (5) can be derived by using
weighted least square to best fit the most relevant points, i.e,
those that correspond to zero energy request and to the maxi-
mum COP values. Another possible convex approximation of
(5) is via a PieceWise Affine (PWA) function. In this case,
the nonlinear characteristic is approximated by the convex
envelope of a finite number of affine terms Ech,`(k) =
max{mc(To)Ech,c(k) + qc(To)}, where the coefficients of
the affine terms are collected in vectors mc(To) and qc(To),
and the max operator is applied componentwise.

2) On-off switching: The chiller absorbs some amount of
electrical energy even when no cooling energy is produced.
In order to have the possibility of switching it on and off,
we introduce the binary variable δch(k), k = 1, . . . ,M , that
represents the on (δch(k) = 1) and off (δch(k) = 0) status
of the chiller at time k, k = 0, . . . ,M . The cooling energy
request Ech,c(k) and on/off command δch(k) are related via
the logical condition

δch(k) = 1⇔ Ech,c(k) > 0. (6)

Let E be an upper bound on uch and ε a small quantity,
typically set equal to the machine precision. Using the
Conjunctive Normal Form in [13], (6) can be expressed
as a mixed integer linear condition: ε − ε(1 − δch(k)) ≤
Ech,c(k) ≤ Eδch(k), which leads to δch(k) = 0 ⇔
Ech,c(k) = 0 and δch(k) = 1 ⇔ Ech,c(k) ∈ [ε, E), that
are practically equivalent to (6).
We can rewrite the model of the chiller integrating the on-off
condition as

Ech,`(k) =

{
(c1(To)E

4
ch,c + c2(To)E

2
ch,c + c3(To))δch(k)

max{mc(To)Ech,c(k) + qc(To)}δch(k),

depending on the adopted approximation. The PWA formu-
lation is particularly convenient since the product between a
(piecewise) affine function Mx+ q and a discrete variable δ
can be reduced to a mixed integer linear condition [13].

C. Combined heat and power unit: Microturbine

A Combined Heat and Power (CHP) unit is a device that
jointly produces electricity and heat power while consuming
primal energy (i.e. fossil fuels or hydrogen) with the purpose
of reducing the amount of energy wasted in the environment.
In most cases one of these two products is a byproduct.
For example, modern power plants recover scattered heat
and deliver it for district heating purposes. Big sized CHPs
are becoming widely used and highly performing. At the
same time a large number of micro-CHP solutions are being
developed, the most promising ones being microturbines
and fuel cells that convert gas or hydrogen into heat and
electricity. Combined Cooling, Heat and Power (CCHP)
devices are also available that convert part of the produced
heat into cooling energy. Here we consider a microturbine
modeled through two static characteristics describing the
electrical power production and the heat production, both as a
function of the fuel volumetric flow rate. Figure 1 represents
the characteristics of the C30 microturbine produced by
Capstone company [14]. We can see that both curves are
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Fig. 1. Characteristic curves of the C30 microturbine.

almost linear. The electrical energy Emt,`(k) and the heat
Emt,h(k) produced by this microturbine during the k-th
time slot can then be expressed as affine functions of the
fuel volumetric flow rate umt(k), that is supposed to be
constant in each time slot, i.e., Emt,`(k) = m`umt(k) + q`,
Emt,h(k) = mhumt(k) + qh, where m`, q`, mh, and qh are
positive coefficients.

The microturbine specifications require a minimum fuel
volumetric flow rate umin

mt for the unit to be operative. We
can introduce the possibility to switch the unit on or off. This
is modeled by the binary variable δmt with the following
logical condition associated: umt(k) ≤ umin

mt ⇔ δmt(k) = 0.
Such condition can be rewritten as: δmt(k)(umin

mt + ε) ≤
umt(k) ≤ δmt(k)umax

mt + (1 − δmt(k))umin
mt , where umax

mt

is the maximum flow rate and ε > 0 is set equal to the
machine precision. The microturbine model thus becomes
Emt,`(k) = δmt(k)(m`umt(k) + q`) and Emt,h(k) =
δmt(k)(mhumt(k) + qh). Note that here we do not model
explicitly the microturbine transient from on to off. If its
duration is smaller than the time slot length δt, then, the static
model is accurate. For control purposes, we have two inputs
that can be set: the fuel volumetric flow rate umt(k) and the
on/off status of the microturbine δmt(k), k = 1, . . . ,M .

D. Storage

Thermal Energy Storages (TESs) are becoming widely
used in medium size grids. TESs represent the most effective
way, or even sometimes the only way, to take advantage
of renewable energy sources. This is indeed the case for
thermal solar energy and geothermal energy systems. In
a smart grid context, they can be used as energy buffers
for unbinding energy production from energy consumption.
More specifically, in a district cooling scenario, a TES for
cooling energy can shift the production of cooling energy
to off-peak hours of electrical energy consumption, make
chillers operate in high-efficiency conditions, and smooth
peaks of electrical energy request with benefits both for
power production and distribution network systems.

There are many different technical solutions to store
thermal energy, the most widely used are indeed fluid tanks
and phase changing materials based storages. From an energy
oriented perspective we will make use of a black box model,
derived based on system identification techniques, that uses
the energy exchange (drowned or inserted) as input and
the thermal energy stored as output. This way of modeling
does not consider the way energy is stored or provided.
The simplest one is a first order AutoRegressive eXogenous
(ARX) system: S(k + 1) = aS(k) − s(k), where S(k) is
the amount of cooling energy stored and s(k) is the cooling
energy exchanged (s(k) > 0 if the storage is discharged,



and s(k) < 0 if it is charged), in the k-th time slot, while
a ∈ (0, 1) is a coefficient introduced to model energy losses.
Based on this model we can reformulate the thermal storage
dynamics in a compact form as S = Ξ0S(0) + Ξ1s, where
we set S = [S(1) · · ·S(M)]>, s = [s(0) · · · s(M − 1)]>,
and Ξ0 and Ξ1 are suitable matrices. Note that batteries for
electrical energy can be modeled in the same way.

E. Renewable energy generator: Wind turbine
A wind turbine is used to convert the kinetic energy of air

mass in motion to electrical energy. The maximum power
that can be theoretically extracted from the wind is given
by P = 1

2cpρAv
3, where cp is the power coefficient, ρ

is the air density, A is the area covered by the rotor and
v is the wind speed. Wind power is thus proportional to
the area covered by the rotor blades and proportional to the
third power of the wind speed (see also Figure 2, dashed
line). Thus, there are two possibilities to extract more power
from the wind, either using larger turbine rotors, or installing
the turbines at places with higher average wind speed. A
simplistic nonlinear model for a wind turbine considers drive
train shaft dynamics, tower fore-aft motion, and blade pitch
dynamics (see, e.g., [15]). The wind turbine dynamics are
highly nonlinear functions of the operating point defined
by the wind conditions. These nonlinearities are described
using the aerodynamic power and thrust coefficients. To the
purpose of the energy management of the district network,
we can consider a static model for the power produced
by the wind turbine as a function of the wind speed as
in Figure 2 (solid line). This figure shows that the actual
power produced by the turbine is limited to some threshold
value (the rated power) when a certain wind speed value
is exceeded. Three different operational modes are typically
defined: Region 1, where the wind speed is too low and the
turbine is turned off; Region 2, below the rated power, where
the power captured from the wind is maximized; Region 3,
above the rated power, where the turbine blades are pitched
out off the wind so that the power production is maintained
constant and the loads on the turbine are minimized. The
transition region between below-rated and above rated is
called at-rated (region 2.5) and is marked via a circle in
Figure 2. A turbine that is optimally sized for the site where
it is installed is operating most of the time around this region.
The wind acting on the rotor blades can therefore either be
considered as a reference signal (Region 2) or a disturbance
(Region 3). The conventional approach for controlling wind
power production relies on the design of two control systems
(a generator-torque controller and a full-span rotor-collective
blade-pitch controller) that work independently, in the below-
rated and above-rated wind-speed ranges, respectively ([16]).

III. DISTRICT NETWORK CONFIGURATIONS

In this section, we show how to compose the models
previously introduced in order to define a scalable district
network. Model composition is indeed easy given that each
component is described in terms of thermal or electrical
energy received as input and possibly provided as output.
Energy balance equations and energy conversion functions
can then be adopted to combine multiple network compo-
nents. For instance, the sum of the cooling energy requests

Fig. 2. Characteristic curve of the power production by a wind turbine.

of the buildings should be equal to the sum of the cooling
energy provided by chillers and taken from/stored in the
thermal storages; each chiller receives as input a cooling
energy request and provides as output the corresponding
electrical energy consumption; the sum of the electrical
energy consumptions should be equal to the electrical energy
produced by the local power generators, the CHP units, taken
from/stored in the batteries, and provided by the main grid.
Depending on the adopted model for each component, the
overall model of the district network has a different complex-
ity, the most general one being hybrid due to the presence of
both continuous and discrete variables and stochastic due to
the disturbances (e.g., occupancy, outside temperature, solar
radiation, wind velocity) acting on the system.

Figure 3 shows a possible district network configuration
and the energy fluxes between its components and the main
grid. The district network is composed by multiple buildings
that share common resources such as cooling and heat
storages, chillers, CHP units, batteries and renewable energy
generators. The three nodes appearing in the figure do not
correspond to any physical component but are introduced to
point out that fluxes associated with the same kind of energy
(electrical, heat, and cooling energy) add up to zero. Some
energy contributions can be controlled (e.g., those related to
storage units), some others can be controlled only indirectly
(e.g., electrical energy requested by the chiller), or cannot
be controlled (e.g., renewable energy production). This is

Fig. 3. District network configuration. The line style encodes the kind
of energy: black thick, red thin, and blue dotted for electrical, heating, and
cooling energy, respectively. Different arrowheads are used for energy fluxes
that can be controlled, controlled only indirectly, or not controlled.



pointed out using different arrowheads in Figure 3. As for
buildings, some of them are controlled in that their cooling
energy request can be modulated to some extent via the zone
temperature set-point. If the zone temperature set-points are
fixed and given by some comfort profiles, then the building
is uncontrollable.

The electrical energy exchanged with the main grid is
given by the amount of energy needed to maintain the
balance between electrical energy demand and generation.
A micro-grid becomes “smart” when it is possible to ap-
propriately set the controllable variables so as to optimize
its behavior. A sensible goal is to minimize the costs while
guaranteeing the satisfaction of the energy needs of the users.
Costs are mainly due to the electrical energy exchange with
the main grid and by additional costs related to device opera-
tion such as startup and fuel costs. Startup costs may be also
introduced to avoid continuous and unrealistic switchings of
devices. The overall cost is then given by:

J = C` + Cch + Cmt + Cf , (7)

where the first term is the electrical energy cost C` =∑M
k=1 C`(k); Cch =

∑M
k=1 Cch(k) is the cost for the chillers

startup; Cmt =
∑M
k=1 Cmt(k) and Cf =

∑M
k=1 Cf (k) are

the costs for the CHPs startup and fuel consumption.
Note that the cost formulation may involve introducing

logical constraints. For example, a chiller startup cost can be
modeled as C E

ch max{δch(k)− δch(k− 1), 0}, where C E
ch is

the actual startup cost which is accounted for at k only if the
chiller was off at k−1 and is switched on at k. Similarly, for
the CHP, its startup cost at k is given by C E

mt max{δmt(k)−
δmt(k − 1), 0}. The fuel costs of a CHP are proportional to
the amount of fuel consumption during the k-th time slot,
i.e., ψfδmt(k)umt(k)δt, where ψf is the unitary fuel cost.
As for the electrical energy cost, the cost per time slot C`(k)
is typically given by a PWA function of the electrical energy
exchange EL(k) with the main grid, i.e.,

C`(k) = max{c1,`(k)EL(k) + c0,`(k)}, (8)

where the coefficients of the affine terms are collected in
vectors c1,`(k) and c0,`(k), and the max operator is applied
componentwise. This expression allows to adopt different
values for revenues (EL(k) < 0) and actual costs (EL(k) >
0), and to account for penalties when the electrical energy
consumption/production EL(k) exceeds certain thresholds.

To describe EL for an arbitrary configuration, we use the
following short-hand notations. Components correspond to
energy contributions and are defined through letters (building
B, chiller C, storage S , CHP microturbine M, wind turbine
W) with a superscript that denotes the model type (symbols
are given in Table I) and the kind of energy (electrical
`, cooling c, and heating h) provided as output. This is
important in the case when a component allows for multiple
kinds of energy as output. For instance, MB,h stands for
the heating energy produced by a CHP described by a
linear on-off model. The subscript possibly denotes the
energy request received as input. The electrical energy EL
for the configuration in Figure 3 is then given by EL =
CA,`←{BB,c+BA,c+Sc} +MB,` + S` +W`. If we plug it into
equation (8) and (7), we get the expression for the cost

function J to be minimized. Note that, in general, J is
uncertain in that it depends on the disturbances acting on
the system, which means that either a min-max or an average
cost criterion can be formulated if disturbances are explicitly
accounted for. Furthermore, when we compose a district
network model plugging together all the elements, we also
get a number of constraints associated with them. Constraints
express both technical limits (i.e., maximum cooling energy
that a chiller can provide) and performance requirements
(i.e., comfort temperature range). Additional constraints can
be added if needed (e.g., the maximum amount of electrical
energy that the main grid can provide). Yet, constraints might
be uncertain due to the presence of disturbances, and, hence
they might be enforced robustly or in probability.

Different formulations of the optimal energy manage-
ment problem (certainty equivalence based, robust, stochas-
tic) can then be considered for the minimization of the
(nominal, min-max, average) cost in presence of (nominal,
robust, probabilistic) constraints. Furthermore, different ar-
chitectures (centralized, decentralized or distributed) can be
conceived and implemented for the resulting optimization
problem solution, depending on the actual communication
and computation capabilities available in the network, and
possible constraints dictated by privacy of information like
each single building consumption and/or usage of local
resources. Obviously, the dimension and complexity of the
model depends on the specific configuration of the district
network, and high dimensional and highly complex models
might be a challenge for the application of certain control
design strategies and architectures, thus calling for heuristic
–though sensible– approaches, separating the discrete input
optimization from the continuous input optimization (see,
e.g., [17], [18]). Depending on the components that are
introduced and their description, the resulting SHS model
simplifies to a continuous system with continuous state and
input variables, convex in the (continuous) control input, or
it is hybrid with state and input that have both a continuous
and a discrete component but with a dynamics that is affine
in the continuous control input for each discrete mode. In
the former case, convex programming can be adopted for
optimal energy management [10]. In the latter case, a mixed
integer linear programming formulation can be adopted [18].
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Type Description Model Optimization Problem

A Biquadratic approximation Ech,` = c1E
4
ch,c + c2E

2
ch,c + c3 Convex-NL

B Piecewise approximation Ech,` = max{mcEch,c + qc} MILP
C Biquadratic on-off Ech,` = (c1E

4
ch,c + c2E

2
ch,c + c3)δch MINLP

D Piecewise on-off Ech,` = max{mcEch,c + qc}δch MINLP∗

Var Type Description Domain

Ech,` Output Absorbed electrical energy Real
Ech,c Control input Cooling energy request Real
δch Control input On-off logical status Binary

Type Constraint Inequalities Var

A-D Electrical energy bounds 0 ≤ Ech,` ≤ Emax
ch,` Output

A-D Cooling energy bounds 0 ≤ Ech,c ≤ Emax
ch,c Input

C-D Logical on-off
Ech(k) ≥ ε− ε(1− δch(k))

Ech(k) ≤ Eδch(k))
Input

B
ui

ld
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g

Type Description Model Optimization Problem

A Linear controllable Ec = BTz +Wd+ b LP
B Linear simulator Ec = BT̄z +Wd+ b /

Var Type Description Domain

Tz Control input Zone temperatures Real
d Uncontrollable input Disturbances Real
Ec Output Cooling energy request by building Real
Ec,j Output Cooling energy request by zone j Real

Type Constraint Inequalities Var

A Comfort bounds Tmin
z ≤ Tz ≤ Tmax

z Input

A Cooling energy bounds
0 ≤ Ec ≤ Emax

c

0 ≤ Ec,j ≤ Emax
c,j

Output

C
H

P
M

ic
ro

tu
rb

in
e

Type Description Model Optimization Problem

A Linear
Emt,`(k) = m`umt(k) + q`
Emt,h(k) = mhumt(k) + qh

LP

B Linear on-off
Emt,`(k) = δmt(k)(m`umt(k) + q`)

Emt,h(k) = δmt(k)(mhumt(k) + qh)
MINLP∗

Var Type Description Domain

Emt,` Output Produced electricity Real
Emt,h Output Produced heat Real
umt Control input fuel inlet Real
δmt Control input On-off logical status Binary

Type Constraint Inequalities Var

A-B Fuel inlet bounds 0 ≤ umt ≤ umax
mt Output

C-D Logical on-off
umt(k) ≤ δmt(k)umax

mt (k) + umin
mt (k)

umt(k) ≥ δmt(k)(umin
mt (k) + ε)

Input

St
or

ag
e

Type Description Model Optimization Problem

A Storage S = Ξ0S(0) + Ξ1s /

Var Type Description Domain

S Output Energy content Real
s Control input Energy exchange Real

Type Constraint Inequalities Var

A Energy content bounds 0 ≤ S ≤ Smax Output
A Energy exchange bounds smin ≤ s ≤ smax Input
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control of wind turbines using LIDAR,” Wind Energy, vol. 16, no. 7,
pp. 1107–1129, Oct. 2013.

[16] J. M. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition
of a 5-MW reference wind turbine for offshore system development,”
National Renewable Energy Laboratory, Tech. Rep. NREL/TP-500-
38060, 2009.

[17] S. R. Cominesi, M. Farina, L. Giulioni, B. Picasso, and R. Scattolini,
“Two-layer predictive control of a micro-grid including stochastic
energy sources,” in ACC, Chicago, IL, USA, 2015, pp. 918–923.

[18] D. Ioli, A. Falsone, and M. Prandini, “An iterative scheme to hier-
archically structured optimal energy management of a microgrid,” in
CDC, Osaka, Japan, December 2015.


