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Abstract— We address input design for piecewise affine sys-
tems so as to satisfy a reachability specification, and, simulta-
neously, detect the inputs that are actually relevant (influential
inputs). This can be useful for system verification, when one
has to check if some undesired/unsafe behavior coded via a
reachability specification can actually occur and then possibly
take appropriate corrective actions . The proposed method is
based on a procedure to assess whether a set of inputs are non-
influential for the given specification. This procedure rests on
a geometrical set-containment test that involves a projection of
the set of states that the system can reach and the set of states
that represents the specification. The test can be formulated as
a mixed integer feasibility problem and integrated in a depth-
first exploration algorithm that returns the maximum number
of non-influential inputs.

I. INTRODUCTION

A reachability problem typically consists in verifying if
the state of a system can reach a certain region, start-
ing from some initial condition (reachability specification).
Reachability analysis can be useful in the context of system
verification, when, for example, one has to check if some
misbehavior – expressed in terms of a reachability specifica-
tion – may occur, so as to eventually take an appropriate
action and redesign the system. If the system evolution
depends on some control inputs, then, reachability analysis
becomes an input design problem where one has to verify if
the control inputs can be set so as to make the system satisfy
the reachability specification. Among the possible solutions
to this problem, we look for the one that maximizes the set
of inputs that are non-influential (i.e., those that can take
an arbitrary value in their range without compromising the
satisfaction of the specification) so as to detect which are
the actually relevant inputs and ease the identification of
the cause of the malfunctioning and the task of devising a
corrective action.
Reachability analysis has been extensively treated in lit-
erature, and effective solutions have been developed for
diverse classes of systems. Many of the proposed techniques
originate from the model checking context, where the aim is
typically to check if a given system with no control inputs
satisfies a certain specification related to its evolution in time.
For discrete systems, it has been shown that checking if a
discrete system S satisfies a specification can be done by
means of a reachability test on the enlarged system obtained
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by composing S with the test automaton that translates
the specification (see e.g. [7]). Model checkers have been
developed to solve the resulting reachability test.
The main issue in performing reachability analysis is the
ability to “compute” with sets, i.e., to represent sets and prop-
agate them through the system dynamics. In model checkers
this process is made fully automatic. In the case of finite
discrete systems, sets can be represented by enumeration, and
reachable sets can be computed starting from the given initial
condition and adding one-step successors till convergence is
achieved. Termination of the algorithm is guaranteed since
the state space is finite. The technical challenge for the
verification of discrete system is to devise algorithms and
data structure to handle large state spaces.
For continuous state systems, model checking techniques are
trickier to be implemented, since, in principle, they would
require to analyze all possible infinite evolutions of the
systems. The idea is then to rely on the computation (either
exact or approximated) of the reachable set of the system
under test, so as to consider in a compact way all its infinite
possible evolutions. There is indeed a vast literature on
reachability analysis for various classes of systems, mainly
deterministic (see [1]–[3], [6], [11], [13]–[17], [19] to name a
few), including the study of tools for reach sets computation.
Different representations of reach sets (polyhedra, zonotopes,
ellipsoids) are adopted. The main idea is to start from sets
that are easy to represent in a compact form and approximat-
ing the system dynamics so that the sets obtained through
the direct evolution of the approximated system admit the
same representation of the starting sets, while ensuring over-
approximation of the reachable sets of the original system.
Other approaches are based on abstracting the continuous
system to a discrete one (by means, for example, of a
bisimulation [5]), and then analyzing the latter via model
checking techniques. Many of these methods can be extended
to the class of hybrid systems, i.e., systems with interacting
discrete and continuous dynamics [4], [11], which include
the class of PieceWise Affine (PWA) systems.

In this paper we investigate bounded time reachability with
relevant input detection for discrete time PWA systems. We
addressed the same problem for the class of linear systems
in [20], [21] where, inspired by [11], [19], we adopted an
optimization-based perspective for maximizing the number
of non-influential inputs. Direct extension of the method
in [20], [21] to a PWA framework leads to a conservative
solution as pointed out in [22]. In this paper, we propose a
different approach that overcomes such a conservativeness
and rests on a geometrical reinterpretation of the problem.



The core of the approach is the formulation of a suitable test
to assess whether or not a set of inputs are non-influential
for the given reachability specification. The test reduces to
verify a geometrical set-containment condition that involves
a projection of the set of states that the system can reach and
the set of states that represents the specification. We shall
then show how the set-containment condition can be turned
into a mixed integer feasibility problem and integrated in a
depth-first exploration algorithm that returns the maximum
number of non-influential inputs.
The rest of the paper is organized as follows. We describe
the class of PWA systems and the proposed geometrical
approach in Section II. Section III provides a numerical
example and Section IV draws some concluding remarks.

II. PROBLEM FORMULATION AND RESOLUTION

A PWA system with state x ∈ X ⊆ Rn, input u ∈ U ⊆
Rm, and output y ∈ Rpis described by

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
for

[
x(k)

u(k)

]
∈ Ai,

(1)
where fi, gi are constant vectors and

Ai = {(x, u) : [Liax L
i
au]

[
x

u

]
≤ Lib}

is a polyhedron. System (1) is well posed if its evolution
is always well-defined. A numerical test for checking if a
system is well posed can be found in [10].

Here we assume that the collection {A}si=1 forms a
polyhedral subdivision of the space X×U .1 Each polyhedron
Ai represents a mode of the PWA system and mode j is
active at time t if (x(t), u(t)) ∈ Aj . Note that, since the
modes define a partition of the state-input space, there is
one and only one active mode at a time. Based the definition
of modes, the state evolution of (1) can be compactly written
as:

x(k) =

k−1∏
j=0

Ai(j)x(0) +

k−1∑
j=0

( k−1∏
h=j+1

Ai(h)Bi(j)u(j) + fi(j)
)
,

where i(j) ∈ {1, . . . , s} is the index of the mode
active at time j. The sequence of modes I =
{i(0), i(1), . . . , i(k − 1)} ∈ {1, . . . , s}k is called switching
sequence.
We consider the case when the system has multiple scalar
inputs (m > 1) and each input ui is bounded in some
interval, i.e., ui ∈ [ui, ui], i = 1, . . . ,m. The input set is
then given by U =×m

i=1
[ui, ui].

We are now in a position to formally state our input design
problem for reachability with relevant input detection.
Let us consider the polytopic set Xf = {x ∈ X : Hax ≤
Hb}. Our goal is to make the state of the PWA system (1)
reach Xf at some time T while maximizing the number of
non-influential inputs.

1∪si=1Ai = X ×U , each Ai is of dimension n+m, and the intersection
Ai∩Aj , i 6= j, is either empty or a common proper face of both polyhedra.

Fig. 1: Exploration tree of subsets of non-influential inputs for
M = {1, 2, 3, 4} by depth-first strategy. If node {1, 2} is not
passing the test, then the subtree originated from node {1, 2} is
removed from the exploration, and so is the branch {4} since it
does not originate subtrees with cardinality greater than 1.

The problem can be formulated as follows:

max
N∈2M, {ujl

(k)}
jl∈I=M\N

|N | (2)

x(T ) ∈ Xf ,

x(k + 1) = Aix(k) +Biu(k) + fi, for

[
x(k)

u(k)

]
∈ Ai

∀ujh ∈
[
ujh , ujh

]
, jh ∈ N , h = 1, 2, . . . |N |,

k = 0, . . . , T − 1

where M = {1, 2, . . . ,m} represents the set of input
indexes, |C| denotes the cardinality of set C and 2C is the
power set of C.
Problem (2) aims at identifying a sequence for the influential
inputs (with indexes in set I) that makes the other inputs
(with indexes in set N ) non-influential while satisfying the
reachability specification. Note that sets I and N are not
known a-priori, and the aim is to maximize the number of
non-influential inputs, i.e., the cardinality of set N .
Problem (2) is in general difficult to solve, since the op-
timization has to be performed over all subsets N of M.
We then propose to address it via a depth-first exploration
strategy that at each step tests whether a subset of inputs are
influential or not. Before detailing the approach we introduce
the definition of jointly influential inputs.

Definition 2.1: Inputs {ujh , jh ∈ N}, N ⊆M, are said
to be jointly non-influential if N is feasible for problem (2).

Suppose that we have a function T : 2M → {0, 1},
that checks whether the inputs in N ∈ 2M are jointly non-
influential or not, and returns 1 or 0 accordingly. In principle,
we should run T for all the subsets N ∈ 2M in order to find
the subset with maximal cardinality that passes the test. In
practice, we can exploit the following trivial property:

Property 1: Inputs {uj , j ∈ N}, with N ⊆ M, can be
jointly non-influential only if inputs {uj , j ∈ N} are jointly
non-influential for any N ⊆ N .
This property suggests to look for the subset of non-
influential inputs with maximal cardinality through a depth
first exploration strategy. We construct a tree where each
node represents a subset of inputs N that is tested via
function T ; at each depth d, the nodes correspond to subsets
with cardinality d (see Figure 1 with M = {1, 2, 3, 4}).



The exploration of the tree starts from the left hand side
branch and takes advantage of the property described above,
since every time a node fails the test, we can remove the
subtree that originates from that node as explained in the
caption of Figure 1. Once a node with cardinality d̄ passes the
test, the subtrees containing modes with cardinality at most d̄
are not tested. In the next section we describe how to check
whether the inputs in a subset of M are non-influential.

A. Test function

Consider a switching sequence Il = {i0, i1, . . . , iT−1}.
The evolution of the state of system (1) on the time interval
[0, T ] starting from x(0) = x0 can be written compactly as:

X = A(Il)x0 + B(Il)U + G(Il)F (Il), (3)

where

X =



x(0)

x(1)

x(2)

...
x(T )


, U =



u(0)

u(1)

u(2)

...
u(T − 1)


, F (Il) =



fi0

fi1

fi2
...

fiT−1


and A(Il), B(Il), and G(Il) are suitably defined matrices. The
constraints on the state-input pairs due to the mode activation
in the switching sequence Il can be written as:

L(Il)
ax X + L(Il)

au U ≤ L
(Il)
b , (4)

where

L(Il)
ax =


Li0ax

. . .

L
iT−1
ax

 ,L(Il)
au =


Li0au

. . .

L
iT−1
au

 ,
L
(Il)
b =

[
Li0
′

b , Li1
′

b , . . . L
iT−1

′

b

]′
.

By plugging (3) in (4) we get:

L(Il)
ax (A(Il)x0 + B(Il)U + G(Il)F (Il)) + L(Il)

au U ≤ L
(Il)
b ,

which becomes M
(Il)
a U ≤ M

(Il)
b , where we set M

(Il)
a =

L
(Il)
ax B(Il) + L

(Il)
au and M

(Il)
b = L

(Il)
b − L

(Il)
ax A(Il)x0 −

L
(Il)
ax G(Il)F (Il). Note that it holds that

⋃
Il∈SSAAAl = UT ,

where
AAAl =

{
U ∈ UT : M(Il)

a U ≤M
(Il)
b

}
and SS denotes the set of all possible switching sequences.
This is because at each time step k it is possible to inject
in the system any input vector u(k) ∈ U , since there always
exists an active mode corresponding to that input due to the
polyhedral subdivision of X × U , and the system evolution
is in fact well defined. The reachability constraint can be
rewritten as:

Ha(A
(Il)
T x0 + B

(Il)
T U + G

(Il)
T F (Il)) ≤ Hb, (5)

where A
(Il)
T , B(Il)

T and G
(Il)
T are obtained by extracting the

last n rows of matrices A(Il),B(Il) and G(Il), respectively.

We can rewrite equation (5) in the compact form:

S(Il)
a U ≤ S

(Il)
b ,

where S
(Il)
a = HaB

(Il)
T and S

(Il)
b = Hb − HaA

(Il)
T x0 −

HaG
(Il)
T F (Il), and define the set

SpSpSpl = {U ∈ UT : S(Il)
a U ≤ S

(Il)
b }.

If the set AAAl ∩ SpSpSpl is not empty, its elements are input
sequences {u(0), u(1), . . . u(T − 1)} that drive the state of
the system into the target set Xf by keeping its evolution in
the switching sequence Il.
We now discuss the formulation of function T by first
considering the case N =M and then the case N ⊂M.

Case N =M: In this case we want to test if all the inputs
of system (1) are jointly non-influential. Clearly, this is true
if and only if all the possible evolutions of the system starting
from the given initial condition satisfy the specification. This
means that for any possible choice of the inputs in the
enlarged space UT , the specification have to be satisfied,
which, thanks to the property of the sets AAAl outlined above,
can be equivalently stated as:

AAAl ⊆ SpSpSpl ∀Il ∈ SS. (6)

Provided that both the sets AAAl and SpSpSpl are polyhedra,
condition AAAl ⊆ SpSpSpl can be checked via the following lin-
ear feasibility test, derived from standard dual optimization
arguments:

min
H(Il)

0 (7)

H(Il)M(Il)
a = S(Il)

a

H(Il)M
(Il)
b ≤ S

(Il)
b

H(Il) ≥ 0

where H(Il) is a matrix of Lagrangian multipliers. Proposi-
tion 1 then follows immediately.

Proposition 1: All the inputs of system (1) are jointly
non-influential if and only if problem (7) is feasible for all
switching sequences.
Note that, even if the single feasibility test (7) is in general
not hard to solve, we have to perform it for all the possible
switching sequences in SS, which can be computationally
demanding. Nonetheless, removing the need of analyzing
all the switching sequences seems to be very hard, if not
impossible, in the general case: indeed, by detecting the non-
influential inputs, we are implicitly assessing a property of
the reach set of the PWA system, and thus the analysis of
all its possible different behaviors seems unavoidable.

Case N ⊂ M: A condition similar to (6) can be also
derived for the case of N ⊂ M. To this end we denote
with ΠIũ (AAAl) the slice of set AAAl obtained by fixing in U
the sequence {ui(k)}T−1k=0 , i ∈ I = M \ N to the value
ũ ∈×i∈I [ui, ui]. Note that it may be the case that the
slice is an empty set (see Figure 2). The inputs in the set
N are jointly non-influential if there exists some value for
the influential inputs ũ = {ui(k)}T−1k=0 , i ∈ I, such that the



following condition holds:

ΠIũ (AAAl) ⊆ ΠIũ (SpSpSpl) ∀Il ∈ SS. (8)

Note that (8) is trivially satisfied when ΠIũ (AAAl) = ∅. By the
definitions of AAAl and SpSpSpl we have that:

ΠIũ(AAAl)=
{
Uj ∈×

j∈N

[uj , uj ]
T :
[
M(Il)

a

]N
Uj ≤M

(Il)
b −

[
M(Il)

a

]I
ũ
}

ΠIũ(SpSpSpl)=
{
Uj ∈×

j∈N

[uj , uj ]
T :
[
S(Il)
a

]N
Uj ≤ S

(Il)
b −

[
S(Il)
a

]I
ũ
}
(9)

where we denote with [Z]N the matrix obtained by extract-
ing from Z the columns that correspond to the inputs in N
(i.e., columns {j, j+m, j+2m, . . . , j+(T−1)m}, ∀j ∈ N ).
Clearly, the sets ΠIũ (AAAl) and ΠIũ (SpSpSpl) are polyhedra as well.
By following the same reasoning of the case N = M, it
can be shown that the set-containment condition (8) can be
checked via the following feasibility test:

min
ũ ∈ ×

i∈I
[ui, ui]T , {H(Il)}Il∈SS

0 (10)

H(Il)
[
M(Il)

a

]N
=
[
S(Il)
a

]N
H(Il)

(
M

(Il)
b −

[
M(Il)

a

]I
ũ

)
≤ S

(Il)
b −

[
S(Il)
a

]I
ũ

H(Il) ≥ 0

∀Il ∈ SS

which is bilinear because of the presence of products between
optimization variables. A feasible solution to problem (10) is
an instance of the influential inputs i, with i ∈ I, that slices
each set AAAl and SpSpSpl in the subsets ΠIũ (AAAl) and ΠIũ (SpSpSpl),
such that ΠIũ (AAAl) ⊆ ΠIũ (SpSpSpl), ∀Il ∈ SS.

Fig. 2: Graphical representation of the enlarged input space UT

in the case of m = 2 and T = 1. Fixing the input u2 to the value
ũ2 slices the setsAAA1,AAA2,AAA3 and determines the sets Σ1, Σ2, Σ3.
Set AAA4 has no intersection with u2(0) = ũ2 so that Σ4 = ∅. If it
is the case that Σi ⊆ SpSpSpl, i = 1, 2, 3, 4, then the value ũ2 is an
appropriate choice for u2 to make input u1 non-influential. Given
that

⋃
Il∈SSAAAl = UT , we are guaranteed that ∪4

i=1Σi = [u1, u1]

For a high dimensional problems, existing methods like
those in [18], [12] for solving bilinear feasibility tests are not
applicable in practice and (10) turns out to be untractable.
Therefore, in the following, we show how to formulate a
tractable approximation of problem (10) via Mixed Integer
Linear Programming.

The bilinearity of problem (10) is caused by the fact that the
right-hand-side of the inequality defining polyhedron ΠIũ(AAAl)
is not known a priori, but have to be properly set (see (9)).
If set AAAl, once sliced, generates a set whose "shape" is
independent of where it is sliced, then the right-hand-side
would not depend on ũ. This can be actually attained when
the set AAAl is a box. In this case, the set obtained by slicing
AAAl would be either a box (if ũ is chosen inside AAAl) or the
empty set (if ũ is chosen outside AAAl). In general, when AAAl
is not a box, it can be overapproximated by an outer box BBBl
so as to provide a sufficient condition for (8) to hold, i.e.,

ΠIũ(BBBl) ⊆ ΠIũ(SpSpSpl)⇒ ΠIũ(AAAl) ⊆ ΠIũ(SpSpSpl). (11)

Naturally, we choose BBBl to be the minimum volume outer
box approximation of AAAl. If we denote with b̄(Il) and b(Il)

the upper and lower limits of BBBl we have that:

BBBl = {U ∈ UT : B(Il)
a U ≤ B

(Il)
b } (12)

where B
(Il)
a = [ImT , −ImT ]′, B(Il)

b = [b̄(Il)
′
, −b(Il)

′
]′,

ImT is the identity matrix with mT dimensions and the mT
elements of the vectors b̄(Il) and b(Il) are obtained as in [19].
The set ΠIũ(BBBl) obtained by slicing BBBl in correspondence of
ũ can be written as:

ΠIũ(BBBl) =
{
U ∈×

j∈N

[uj , uj ]
T :
[
B(Il)

a

]N
U ≤ B

(Il)
b −

[
B(Il)

a

]I
ũ
}
.

or, alternatively,

ΠIũ(BBBl)=


T−1

×
k=0
×
j∈N

[b
(Il)
j (k), b̄

(Il)
j (k)], ũ∈

T−1

×
k=0
×
i∈I

[b
(Il)
i (k), b̄

(Il)
i (k)]

∅, otherwise
.

For ease of notation, we denote with b(Il)N and b̄(Il)N the lower
and upper limits of the sliced box, obtained by stacking in
column the scalar elements of b(Il) and b̄(Il) that correspond
to the inputs in N . The case of the sliced box ΠIũ (BBBl) being
non-empty is addressed in the following proposition whose
proof is omitted due to space limitations (see [22]).

Proposition 2: Let ΠIũ (BBBl) 6= ∅. Then, the condition
ΠIũ (BBBl) ⊆ ΠIũ (SpSpSpl) is satisfied if and only if:

∃ũ ∈ [b
(Il)
N b̄

(Il)
N ] :

[
S(Il)
a

]I
ũ ≤ S

(Il)
b − L(Il), (13)

with L(Il) = 1
2

[
S
(Il)
a

]N
(b̄

(Il)
N + b

(Il)
N ) + 1

2

∣∣∣∣[S(Il)
a

]N ∣∣∣∣(b̄(Il)N − b
(Il)
N ).

Proposition 2 states that a value for ũ that makes the set
containment condition (8) hold can be found via a linear
feasibility test. In general, we would like to solve the feasi-
bility test (13) for all the possible switching sequences, so
that the set containment condition is satisfied for all of them.
Nonetheless, we can not simply stack all the constraints of
the form (13) for every possible switching sequence, since
this would lead to an unfeasible problem. In fact, in general,
there is no common value for ũ shared by all the switching
sequences, so that some of the sets ΠIũ (BBBl) may result to be
empty. For these sets we would like to make the condition
ΠIũ (BBBl) ⊆ ΠIũ (SpSpSpl) trivial, so as to guarantee the feasibility
of the whole problem. For this reason, we split the condition



ΠIũ (BBBl) ⊆ ΠIũ (SpSpSpl) in the following two parts:

• if ũ ∈ [b
(Il)
I , b̄

(Il)
I ], ΠIũ (BBBl) ⊆ ΠIũ (SpSpSpl) ⇔[

S
(Il)
a

]I
ũ ≤ S

(Il)
b − L(Il),

• if ũ /∈ [b
(Il)
I , b̄

(Il)
I ], ΠIũ (BBBl) ⊆ ΠIũ (SpSpSpl) is always

satisfied
We now show how to encode these conditions in a Mixed In-
teger Feasibility Test. Consider a single switching sequence:
the constraint expressing the condition that ũ belongs to the
box BBBl can be expressed as:

Taũ ≤ T
(Il)
b , (14)

where Ta = [I|I|T , −I|I|T ]
′

and T(Il)
b = [b̄

(Il)
′

I −
b
(Il)
′

I ]′. We now introduce 2|I|T binary variables σ
(Il)
t ,

t = {1, . . . , 2|I|T}, one per each row of (14), defined by
σ
(Il)
t = 1 ⇔ Ta,tũ ≤ T

(Il)
b,t . This definition can be

translated into the following linear inequalities via the big-M
technique, [8]:

Ta,tũ−T
(Il)
b,t + V̄

(Il)
t σ

(Il)
t ≤ V̄ (Il)

t

−Ta,tũ+ T
(Il)
b,t + V

(Il)
t σ

(Il)
t ≤ 0,

where V̄
(Il)
t = maxũ Ta,tũ − T

(Il)
b,t and V

(Il)
t =

minũ Ta,tũ − T
(Il)
b,t can be computed by using the same

technique as in Proposition 2.
In order to make the constraint (13) trivially satisfied when
ũ is not inside the box BBBl we can now exploit the binary
variables defined above and write the following constraint:[
S(Il)
a

]I
ũ+ Z(Il)σ(Il) ≤ S

(Il)
b − L(Il) + Z(Il)12|I|T , (15)

where 12|I|T is a column vector of 2|I|T ones, and each
column [Z]t of Z is defined by:

[Z]t = max
ũ

[S(Il)
a ]I ũ− S

(Il)
b + L(Il), (16)

where the max operator is to be interpreted row-wise. Again,
(16) can be tackled by means of the same technique used in
Proposition 2. Equation (15) becomes tight only if all the
σ
(Il)
t , t = 1, . . . , 2|I|T , are equal to 1, which is equivalent

to say that ũ belongs to the box BBBl.
Finally, we can setup the following Mixed Integer Feasi-

bility Test:

min
ũ, {σIl}Il∈SS

0 (17)

Ta,tũ−T
(Il)
b,t + V̄

(Il)
t σ

(Il)
t ≤ V̄ (Il)

t

−Ta,tũ+ T
(Il)
b,t + V

(Il)
t σ

(Il)
t ≤ 0[

S(Il)
a

]I
ũ+ Z(Il)σ(Il) ≤ S

(Il)
b − L(Il) + Z(Il)12|I|T

∀Il ∈ SS.

If feasible, problem (17) returns a sequence ũ = {ui(0), . . . ,
ui(T −1)}, i ∈ I such that all the non-empty slices ΠIũ(BBBl)
of the sets BBBl are entirely contained in the corresponding
slices ΠIũ(SpSpSpl) of the sets SpSpSpl, which implies that the inputs
in N =M\ I are jointly non-influential.

III. NUMERICAL EXAMPLE

We consider the system in Figure 3 that represents a
simplified version of the input consolidation scheme of
the autopilot of an helicopter. The system has the role of
validating the data received by the sensors and guarantees
that the measures used in the control loops are reliable. In
particular, the validation is performed by introducing two
sensors per quantity to be measured (that in this case are the
airspeed and the height of the helicopter), and comparing the
absolute value of the difference of the data received from the
sensors with a threshold. If a pair of sensors passes the test,
the corresponding counter is incremented by 1, otherwise it is
reset to 0. If the counter exceeds a predefined threshold, here
set to 2.5, (i.e., the corresponding sensors measures are close
for 3 consecutive time steps), then the counter keeps that
value even if the data keep passing the test in the next time
steps. Note that the threshold on the values measured by the
sensors is a user-modifiable variable in the test phase, and is
therefore considered as an additional input. The resulting sys-
tem has 2 state variables – AIRSP_COUNTER_PREVIOUS
and RHT_COUNTER_PREVIOUS – representing the value
stored in the counters, and 6 inputs – AIRSPEED_1,
AIRSPEED_2, RADAR_HEIGHT_1, RADAR_HEIGHT_2,
A_TRESHOLD, R_TRESHOLD – representing the values of
two pairs of sensors and the two corresponding thresholds.
For ease of notation we will refer to the state variables as
x1 and x2 and the input signals as ui, i = 1, . . . , 6.

The range for the inputs are set as follows u1 ∈ [0, 160],
u2 ∈ [0, 160], u3 ∈ [ε, 200], u4 ∈ [5, 100], u5 ∈ [5, 100],
u6 ∈ [ε, 200], where ε = 10−5 is the tolerance above which
a number is considered positive in our implementation. We
consider the problem of detecting non-influential inputs for
the specification: x1(T ) > 2.5 ∧ x2(T ) > 2.5, which
is satisfied if for 3 consecutive time instants both pairs of
inputs pass the threshold test. Running our algorithm returns
the following output:

Computing non-influential inputs for
system:
INP_CONSOL.pwa
Specification: x_1(T)>2.5 ∧ x_2(T)>2.5
Time T -> 3.
... Tree exploration ...
1) I = 1 2 3 4 5 6 N = * * * * * *

Time elapsed: 0 h 0 m 17 s -> OK
2) I = * 2 3 4 5 6 N = 1 * * * * *

Time elapsed: 0 h 0 m 16 s -> OK
3) I = * * 3 4 5 6 N = 1 2 * * * *

Time elapsed: 0 h 0 m 2 s -> OK
4) I = * * * 4 5 6 N = 1 2 3 * * *

Time elapsed: 0 h 0 m 12 s -> NO
5) I = * * 3 * 5 6 N = 1 2 * 4 * *

Time elapsed: 0 h 0 m 2 s -> OK
6) I = * * 3 * * 6 N = 1 2 * 4 5 *

Time elapsed: 0 h 0 m 2 s -> OK
7) I = * * 3 * * * N = 1 2 * 4 5 6

Time elapsed: 0 h 0 m 3 s -> NO
8) I = * 2 * 4 5 6 N = 1 * 3 * * *

Time elapsed: 0 h 1 m 4 s -> NO
9) I = 1 * 3 4 5 6 N = * 2 * * * *

Time elapsed: 0 h 0 m 16 s -> OK



Fig. 3: Input consolidation scheme

10) I = * * * 4 5 6 N = * 2 3 * * *
Time elapsed: 0 h 1 m 16 s -> NO

...done.

Non-influential inputs indexes: 1 2 4 5.

Influential inputs sequence:

u_3 = 160.0001 160.0001 160.0001 160.0001

u_6 = 95.0001 95.0001 95.0001 95.0001

where I and N respectively denote the subsets of influential
and non-influential inputs that are checked at each step of
the tree exploration. Note that at iteration 7 the maximum
number of non-influential inputs found is 4, but there are
still two branches (those starting from nodes {1 * 3 *
* *} and {* 2 * * * *}) that can lead to solutions
with 5 non-influential inputs; for this reason, the exploration
continues and stops only when the possibility of detecting 5
non-influential inputs has been ruled out. We obtain that the
only two influential inputs are the thresholds on the sensors
measures, u3, u6. This is due to the fact that both u3 and
u6 can be set to a value that is greater than the maximum
absolute difference of the corresponding other inputs, i.e.,
u3 = 200 > maxu1, u2∈[0, 160]2 |u1 − u2| and u6 = 200 >
maxu4, u5∈[0, 100]2 |u4 − u5|, so that the condition of input
validity is always satisfied, for any choice of u1, u2, u4, u5.
Changing the ranges for the threshold inputs can modify this
outcome. If we set (u3, u4) ∈ [ε, 50]2, then the inputs u3
and u6 are non-influential. This result is achieved by setting
the corresponding pair of inputs u1, u2 and u4, u5 to the
same value at each time instant, so that |u1(k) − u2(k)| =
|u4(k) − u5(k)| = 0, ∀k = 0, . . . , 3, and u3 and u6 can be
therefore set to any positive value.

IV. CONCLUSIONS

We proposed a method for detecting relevant inputs in
PWA system verification. The resulting MILP problem can
be computationally demanding and suitable methods are
needed to cope with large scale systems. The joint use of
MILP classical solvers and techniques borrowed from theo-
retical computer science, like boolean satisfiability problem
solvers (SAT), can be explored to this end (see [9]).
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