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Abstract— We derive a new routing game model for urban
centers that takes into account parking-related traffic along
with all other traffic. In particular, we combine a queuing
game model for on-street parking with a classical routing game
framework and consider two types of populations: parking and
throughput. While the throughput traffic plays the standard
routing game by selecting a route from their origin to their
destination, the parking traffic selects a parking zone (block-
face) in addition to their route. We show that the routing game
on a queue–flow network of this type is a potential game. We
construct practical examples by using subsets of the Seattle
downtown area to illustrate the usefulness of this novel modeling
paradigm. We verify that parking–related traffic can have a
large impact on the routing choices of the throughput drivers
as well as the overall congestion and social cost. By varying the
cost of parking in different parking zones, we demonstrate that
parking–related traffic can be adjusted to satisfy a particular
objective.

I. INTRODUCTION

Transportation systems are the backbone of cities since

they support a large number of crucial interactions be they

economic transaction, resource distribution, or emergency

response in nature. Due to the great urban sprawl [1]–[3],

transportation infrastructure in cities is being taxed to its

limits. As a result, cities incur large economic costs from

transport-related inefficiencies [3], [4]. There is an urgent

need for urban municipalities to find new and economical

ways of improving urban mobility that do not require a

complete overhaul of the existing system.

Congestion is a particularly pressing transportation-related

inefficiency that urban areas face. Across the U.S., traffic

congestion is responsible for nearly 4 billion gallons of

wasted fuel a year and nearly 7 billion extra hours of travel

time [5]. Beyond economic costs, congestion has adverse

effects on public health, the environment, and general quality

of life in cities [6], [7].

The most common way urban municipalities address this

problem is through the use of congestion charges. These have

been implemented in many of the states and cities within

the U.S. as well as in international cities such as London,

Singapore, and Stockholm among others with varying levels
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of success [8]–[10]. Congestion charges have long been

touted by economists to be a successful, if not the successful,

mechanism for decreasing congestion, and yet the theory has

confronted stiff opposition from the public, with criticism

that they disproportionately target the poor, push traffic

towards more residential neighborhoods, and have a negative

impact on local economies by incentivising people to stay

away from urban areas [11], [12]. The idea behind congestion

charges is to make each driver pay the marginal social cost

of their trip. However, this is not easily computable and thus,

a significant obstacle to thir implementation is determining

the right cost to charge drivers.

A second, and perhaps less intuitively obvious, approach

to decreasing congestion in urban centers is through parking

pricing. A significant amount—up to 40% in U.S. cities—

of all arterial traffic in urban areas stems from drivers

looking for parking [13]. This approach has the added benefit

that it minimizes a significant source of congestion and

can be implemented using largely pre-existing infrastructure.

Many pilot programs to test pricing schemes have been

implemented (see, e.g., [14]–[16]).

We aim to develop a novel theoretical framework for

understanding the effect of parking-related driving behaviors

such as circling while looking for parking on overall conges-

tion and route choice. In particular, we combine the classical

routing game [17]–[20] on a network with a queueing model

of parking. Given a road network topology, we allow for

multiple populations of drivers, some populations being des-

ignated as potential parkers, to select a route from their origin

to their destination by maximizing their own utility. Regular

throughput traffic populations travel from their origin to their

destination while potential parker populations try to find on-

street parking near the attraction that is their destination.

Each attraction has several parking areas—collections of

blockfaces—associated to it.

We extend the routing game framework go beyond the

standard routing choices and account for the additional

decision that the parking population must make with regard

to selecting the blockface along which they park. We show

that this modified routing game is a potential game [21].

We demonstrate through several examples—including real-

istic urban transportation network topologies—the impact

parking-related congestion and route choice has on the over

all congestion. We analyze the user-selected equilibrium for

the game and present some insights into how parking popula-

tions respond to the cost of parking and influence congestion

on the links in the queue–flow network. In addition, we

compare the user-selected equilibrium (Wardrop) induced



welfare to the socially optimal welfare.

The paper is organized as follows. In Section II, we present

the queuing model for on-street parking. The queue model

is used to inform the potential function of the routing game

on queue–flow networks which is introduced in Section III.

In Section IV we present simulation results for using real-

world networks taken from the downtown Seattle area. We

conclude with a discussion of future work in Section V.

II. OBSERVABLE QUEUING GAME

We aim to combine a queuing model of on-street parking,

which is inherently discrete, with the routing game so that

we can assess the effect of parking-related congestion due

to potential parkers circling looking for an available spot

on the overall congestion which includes congestion due to

throughput traffic.

To motivate the routing game model on queue–flow net-

works, we consider a simple observable queue game in which

arriving customers observe the queue length and choose to

join by maximizing their utility which is a function of the

reward for having parked, the cost of additional wait time

due to circling, the cost of parking itself. We use this queue

game to inform the additional cost we will add to the routing

game to account for populations of potential parkers.

Abstractly, the queue length represents the amount of

parking related congestion on a collection of roadways that

make up a parking area which is a collection of blockfaces.

The nominal expected utility of an arriving customer to the

system with queue length k is given by

αk = R− Cw(k+1)
µc . (1)

The total expected utility for parking is

βk = R− Cw(k+1)
µc − Cp

µ . (2)

where the cost of parking is Cp per unit time. On the other

hand, if the customer were to balk, the total expected utility

is zero.

The optimal strategy for a customer arriving to a queue

with length k and then deciding whether or not to join by

maximizing their expected utility is to join the queue if and

only if βk ≥ 0. In this case, if the decision to join the queue

depends on the customer optimizing their individual utility,

then the system will be a M/M/c/nb queue where

nb =
⌊
(Rµ−Cp)c

Cw

⌋

(3)

is the balking level, i.e. it is the maximum queue length after

which arriving customers decide not to drive to a parking

area and instead, select some outside option such as taking

the bus. The balking level is determined by solving αnb−1 ≥
0 > αnb

(respectively, βnb−1 ≥ 0 > βnb
).

III. FLOW NETWORK MODEL

In this section, we present the routing game where some

users select their parking destination in addition to their

route. To combine the queuing model of the previous section

with this framework, we relax the discrete nature of the queue

length and consider the incremental expected utility a mass

of population experiences if they choose park, i.e. join the

queue. In particular, we define the marginal cost of one driver

entering a parking area and thus, one of the queues. Since

the routing game is inherently static, we consider the case

when the balking level is less than the maximum congestion

reached in the queue–flow network system (meaning, we

exclude the outside option for the time being).

A graph is a natural abstraction of an urban area where

aterials are modeled as edges and intersections, origins, and

destinations are modeled as nodes. Drivers, each having an

origin and destination, select a path among the edges that

leads them from their origin to their destination and they do

so by finding the path that has the least cost to traverse. The

routing game is one method of determining the equilibrium

given this game framework and is formulated as follows.

To formulate the routing game we consider a directed

graph given by G = (V, E) where V is the set of verticies or

nodes corresponding to intersections, origins, or destinations

and E is the set of directed edges corresponding to roads

joining the nodes. Edges e ∈ E take the form (i, j) ∈ V ×V .

Along with the sets of nodes and edges, we define a set of

attractions A that drivers are traveling to as well as a set of

parking areas P .

A parking area p ∈ P consists of a set of nodes denoted

N p ⊂ V and the edges that connect them denoted Ep ⊂
E . We will define indicator vectors for each of these sets

respectively N
p ∈ R

|V| and E
p ∈ R

|E|:

(Np)i =

{

1, if node i is in parking area p

0, otherwise
(4)

(Ep)e =

{

1, if edge e is in parking area p

0, otherwise
(5)

An attraction a ∈ A consists of a set of parking areas Pa

that drivers traveling to that attraction can choose from. An

individual population starts at a single origin node o ∈ V
and travels to a specific attraction a ∈ A. We will denote the

population associated with this origin-attraction pair as sao .

The size of these populations are given a priori. Furthermore,

traffic that parks in area p will travel through the network to

one of the nodes in N p and will then become circling traffic

which is added to the edges in Ep. We note that several

attractions may share parking areas.

There are two types of populations. The first type are

throughput drivers and these populations are associated to

an attraction that has only one parking area associated to it

and this parking area consists of a single node. Hence, they

only choose their route in the routing game. The second type

are parkers and, while their attraction is fixed, in addition to

selecting their route, they choose their parking area and the

destination node within the parking area.

We use d ∈ N p to denote a node (destination) drivers

in a parking–type population travel to in order to enter that

parking area. Thus, sapo will be the portion of population

traveling from origin o to attraction a and parking in area
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Fig. 1. Illustration of A and P and parking area nodes.

p and sapod will be the subset of this population that enters

parking area p through node d. These subpopulations satisfy

the following relationships:

sao =
∑

p∈P sapo
sapo =

∑

d∈Np s
ap
od

sap =
∑

o∈V

∑

d∈Np s
ap
od






(6)

As an example, we illustrate what the sets A and P along

with the entry nodes into each parking represent in Figure

1. We note that we can simply include all the nodes in a

parking area as possible destination nodes. Since the cost of

traveling to an internal node before beginning to circle will

always be higher than simply traveling to a node on the edge

of the parking area since no mass will travel to these nodes

at equilibrium.

The total amount of traffic that reaches a given parking

area coming from any origin and traveling to any attraction

(if multiple populations are using that parking area) is

sp =
∑

o

∑

a s
ap
o =

∑

o

∑

a

∑

d s
ap
od . (7)

We use the notation s ∈ R
|V|×|A|×|P|×|V| as a short hand

for the vector of all populations.

The contribution to traffic flow on edge e from each

individual population sapod is given by (xap
od)e. We denote

the vector of all these edge flows as x
ap
od ∈ R

|E|. The total

congestion vector is given by

x =
∑

p [
∑

a

∑

o

∑

d x
ap
od ] + αp

E
psp (8)

=
∑

p

∑

a

∑

o

∑

d [x
ap
od + αp

E
psapod ] (9)

with congestion on an individual edge e denoted xe. The

first portion of the above sum is the contribution from traffic

flow in transit from origin to destination. The second portion

is the parking traffic that circles in a given parking area after

it arrives while waiting to park. The term αp defines the

fraction of traffic that is circling on a given link in parking

area p at any time. We assume that circling traffic will spread

out uniformly over the parking area and thus we let

αp = 1
|Ep| . (10)

We define the node–edge incidence matrix A = (aib) ∈
{−1, 0, 1}|V|×|E| by

aib =







1, if i is the origin of edge b
−1, if i is the destination of b
0, otherwise

(11)

for all b ∈ E and for all i ∈ V . The the flow vector for each

origin-attraction pair that chooses a specific parking area and

entry node satisfies

Axap
od = s

ap
od , x

ap
od ≥ 0 ∀o, d, a, p (12)

where we define the demand vector s
ap
od as

(sapod)i =







sapod , if i = o

−sapod , if i = d

0, otherwise

(13)

We define the potential function

P (x, s) =
∑

e

∫
xe

0
τ le(u) du+

∑

p

∫ sp

0
Cp(u) du+

∑

a,p

∫ sap

0
−Rap du (14)

where le is a standard edge latency function that is assumed

to be strictly increasing, τ (in units of money/time) is

a parameter that represents the population’s time money

tradeoff, Rap is the reward for parking in area p for drivers

traveling to attraction a, and Cp(u) is the cost of parking

derived from the queuing model defined by

Cp(u) =
Cp

p

µp +
Cp

w

µpcpu (15)

with u being a variable representing the mass a small amount

of population contributes to the congestion in parking area

p. Conceptually, we can think of u as adding a driver

to the queue in the discrete formulation of the queuing

game and (15) as the marginal utility. Moreover, having

separate rewards for parking-attraction pairs allows us to

model parking areas shared between several attractions to be

convenient for some and inconvenient for others. Note that

since Cp
p/(µ

pcp) is positive, Cp(u) is strictly increasing. As

a result, the potential function P (x, s) is strictly convex.

The optimization problem that is used to find the equilib-

rium for the parking-routing game is given as follows:

min
x,s

P (x, s) (16a)

s.t. Axap
od = s

ap
od , ∀ o, d, a, p (16b)

sao =
∑

p

∑

d s
ap
od , ∀ o, a (16c)

x
ap
od ≥ 0, ∀ o, d, a, p (16d)

sapod ≥ 0, ∀ o, d, a, p (16e)

x =
∑

p

∑

a

∑

o

∑

d [x
ap
od + αpE

psapod ] (16f)

sp =
∑

o

∑

a

∑

d s
ap
od , ∀ p (16g)



Note that sao is given a priori. Since P (x, s) is strictly

convex, (16) has a unique global minimizer.

Let Rod be the set of all routes from an origin node o to

destination node d. Let r ∈ Rod be a specific route and let

the set of edges that compose r be denoted (o → d)r ⊂ E .

For each population associated with an origin-attraction

pair (o, a), we define a set of strategies

Ua
o = {(p, d, r)| p ∈ Pa, d ∈ N p, r ∈ Rd

o}. (17)

We define the cost associated with a particular strategy

(ua
o)i = (pi, di, ri) ∈ Ua

o to be

ℓao

(

(ua
o)i

)

=
∑

e∈(o→di)ri
τ le(xe)

︸ ︷︷ ︸

travel latency

+αpi

∑

e∈Epi τ le(xe)
︸ ︷︷ ︸

circling latency

−(Rapi − Cpi(spi))
︸ ︷︷ ︸

parking cost

(18)

and we use (sapi

odi
)ri to denote the population that chooses

this strategy (ua
o)i.

We say (x, s) is feasible if it satisfies the constraints of

(16). We say (x, s) is a Wardrop Equilibrium of the parking-

routing game if and only if it is feasible and for any (o, a)
pair, any two strategies (ua

o)i, (u
a
o)j ∈ Ua

o satisfy

ℓao((u
a
o)i) ≤ ℓao((u

a
o)j) (19)

if (sapi

odi
)ri > 0 and (s

apj

odj
)rj = 0 and

ℓao((u
a
o)i) = ℓao((u

a
o)j) (20)

if both (sapi

odi
)ri > 0 and (s

apj

odj
)rj > 0.

Intuitively this says that for every origin-attraction pair,

no infinitesimal mass of drivers can improve their cost by

switching to another parking area, another destination node,

or another route.

Theorem 1: The optimizer of (16) satisfies the Wardrop

Equilibrium Condition for the parking-routing game.

Proof: In order to write the Lagrangian of (16) we

introduce the following Lagrange multipliers:

πap
od ∈ R

|V|, ∀ o, d, a, p for Equation (16b) (21)

κa
o ∈ R, ∀ o, a for Equation (16c) (22)

ξapod ∈ R
|E|
+ , ∀ o, d, a, p for Equation (16d) (23)

νapod ∈ R+, ∀ o, d, a, p for Equation (16e) (24)

We use π, κ, ξ, and ν as short hands for each of the sets

of Lagrange multipliers. The Lagrangian is given by

L(x, s, π, κ, ξ, ν) = P (x, s) +
∑

o,d,a,p

[

(πap
od )

T

· (Axap
od − s

ap
od) + κa

o(s
ap
od − sao)− (ξapod )

T
x
ap
od − νapod s

ap
od

]

(25)

The optimality condition ∂L
∂(xap

od
)e

= 0 where e = (i, j) yields

le(xe) + (πap
od )i − (πap

od )j = (ξapod )e (26)

Note that (ξapod )e ≥ 0 with equality achieved only when

(xap
od)e > 0 by complimentary slackness.

Similarly, the optimality condition ∂L
sap

od

= 0 yields

αp

∑

e∈Ep τ le(xe)−Rap + Cp(sp)

− (πap
od )o + (πap

od )d + κa
o = νapod (27)

where νapod ≥ 0 with equality achieved when sapod > 0 by

complimentary slackness.

For any (o, a) pair, consider any strategy (ua
o)m ∈ Ua

o .

Summing Equation (26) along path rm yields

∑

e∈(o→dm)rm
le(xe) + (πapm

odm
)o − (πapm

odm
)dm

=
∑

e∈(o→dm)rm
(ξapm

odm
)e (28)

Summing Equations (28) and (27) yields

∑

e∈(o→dm)rm
le(xe)

+ αpm

∑

e∈Epm τ le(xe)−Rapm + Cpm(spm) + κa
o

= νapm

odm
+
∑

e∈(o→dm)rm
(ξapm

odm
)e (29)

which is equivalent to

ℓao

(

(ua
o)m

)

+ κa
o = νapm

odm
+
∑

e∈(o→dm)rm
(ξapm

odm
)e (30)

For any two strategies (ua
o)m, (ua

o)n ∈ Ua
o with positive mass

we have

νapm

odm
= νapn

odn
= 0 (31)

since sapm

odm
> 0 and sapn

odn
> 0. Also

∑

e∈(o→dm)rm
(ξapm

odm
)e =

∑

e∈(o→dn)rn
(ξapn

odn
)e = 0 (32)

since (xapm

odm
)e > 0 for all e ∈ (o → dm)rm and (xapn

odn
)e > 0

for all e ∈ (o → dn)rn . It follows that

ℓao

(

(ua
o)m

)

= −κa
o = ℓao

(

(ua
o)n

)

(33)

satisfying Condition (20). If a strategy (ua
o)n ∈ Ua

o has mass

0, either no mass in population (o,a) chose parking area pn
and destination dn, i.e. sapn

odn
= 0 implying νapn

odn
≥ 0; or no

mass chose route rn implying that there exists e ∈ (o →
dn)rn such that (xapn

odn
)e = 0 and thus ξapn

odn
)e ≥ 0. Either

way we have

ℓao

(

(ua
o)m

)

= −κa
o

= ℓao

(

(ua
o)n

)

− νapn

odn
+
∑

e∈(o→dn)rn
(ξapn

odn
)e

︸ ︷︷ ︸

≥0

(34)

which yields

ℓao

(

(ua
o)m

)

≤ ℓao

(

(ua
o)n

)

(35)

satisfying Condition (19).

We remark that we choose to formulate the routing

game using the edge formulation as opposed to the path

formulation because the path formulation requires that all

paths be enumerated in the computation step and for large

graphs and complex networks like those arising from urban

arterials this may be time consuming. We remark that the
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Fig. 2. Setup and results for Example 1 (SR-99). (a) Queue–flow network: Magenta nodes are parking population sources and the magenta boxes are the
parking areas. Through traffic begins at every node and flows to the destination node shown in blue. (b) The social cost evaluated at the Nash equilibrium
and the socially optimal solution as a function of the cost of parking C1

p in area 1 (with C2
p = 0.01 fixed) for Cw = C1

w
= C2

w
∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

(c) The portion of the social cost due to routing under the Nash equilibrium as a function of the cost of parking C1
p in parking area 1 (with C2

p = 0.01

fixed) for Cw ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We point out for Cw = 1 the critical point Cc

p at which the routing demand is no longer flexible to increases
in price and the price C∗

p that minimizes the routing costs (i.e. the latency experienced by all the populations).

(a) (b) (c)

Fig. 3. All flow for Example 1 (SR-99) with C2
p = 0.01 in area 2 and (a) C1

p = 0.01, (b) C1
p = 0.124, and (c) C1

p = 0.2 in area 1. From left to
right ((a) to (c)), we see that the traffic in the two parking zones shift from equally distributed between the two areas to largely being in area 2. On the
spectrum from yellow to red, we show the flow intensity with red indicated a large amount of flow and yellow indicating less flow.

edge formulation is not equivalent to the path formulation

in that the set of feasible flows for the edge formulation is a

superset of the set of feasible flows for the path formulation.

In particular, the set of feasible edge flows contains the

commodity cycle flows which are not in the set of feasible

path flows [22, Theorem 3.5]. However, these cycle flows

will not be selected by the users since the cost along links

is positive and therefore accumulates.

IV. RESULTS

We now present several rich examples that effectively il-

lustrate the usefulness of the queue–flow modeling paradigm

both for analysis of congestion in multi-use transportation

networks as well as for design of system paramters.

First, we take care of some notational preliminaries. In

the examples of this section, we measure flows on each

edge (xe) in cars per unit time. We use linear latencies that

were derived from the Bureau of Public Roads (BPR) link

performance function which is given by

lBPR
e (xe) = te

(

1 + 0.15
(

xe

ce

)4
)

(36)

where te is the free-flow travel time on link e (length/speed

limit) and ce is the capacity of link per unit time [23]. We

heuristically take ce to be

ce =
50 cars

mi
×
(

speed
limit

)
(37)

assuming cars are travelling in free-flow with approximately

50 cars per mile (approximately 100 feet per car). We chose

the linear latency that agrees with this function at xe = 0
and xe = 3ce at free-flow and when traffic is moving 4 times

slower:

le(xe) = te

(

1 + 4xe

ce

)

. (38)

To demonstrate the usefulness of the routing game for queue–

flow networks, we explore two examples using different

regions in the Seattle downtown area and its arterials as the

basis for the network topologies.

A. Example 1: SR-99

In the first example, we construct a queue–flow network

using a portion of the Seattle downtown area near state

route 99 (SR-99), a heavily traversed road. The example

consists of two parking zones with parking traffic coming

from a small number of nodes and one destination node

for all throughput traffic—with origins at every node in the

network—exiting onto SR-99. This, for instance, would be



(a)

Fig. 4. Structure of Amazon area simulation. Magenta dots are traffic
sources (with radius indicating size relative to other sources.) Parking areas
are polyhedra. The lower figure shows location of the edges from Figure5

consistent with constituents exiting the downtown area after

work while others seek to find parking close to a nearby

restaurant in the two parking areas.

In Figure 2a, we show the network with the exit node for

all throughput traffic depicted in blue and the origin nodes

for the parking populations and parking zones depicted in

magenta. In Figures 2b and 2c we show the social cost

under the user-selected (Wardrop) equilibrium and socially

optimal strategy and the routing portion of the Wardrop-

induced social cost, respectively. The Wardrop-induced cost

is always higher than the socially optimal cost as expected.

Both costs increase with Cw = C1
w = C2

w and with the

cost of parking C1
p . Interestingly, the Wardrop-induced cost

plateaus when the price of parking reaches a value after

which the selfish routing no longer changes. This indicates a

critical point exists after which there is no flexibility in the

demand for values of C1
p larger than the critical point. This

critical point can be seen in Figure 2c for each value of Cw

(we highlight the critical value Cc
p for Cw = 0.1); indeed,

it is the cost of parking at which the routing cost becomes

fixed for all larger values of C1
p .

In addition, in Figure 2c, we see that for each value of Cw,

the routing cost obtains a minimum for some value of C1
p

(indicated for Cw = 0.1 by C∗
p). These points represent the

optimal price of parking that a municipal service provider

should charge if its objective is to minimize the latency

experienced by the total population—note this objective

might not align with minimizing social cost. Moreover, as

the cost of waiting Cw increases, the price of parking that

minimizes the routing cost becomes larger. We remark that

in Seattle, like many municipalities, there are regulatory

constraints on the maximum value that can be charged per

hour for on-street parking. This value tends to be around

$7; hence, if the cost of waiting is too large, then it may

not be possible to optimally design the price of parking to

minimize the latency experienced by the total population.

This suggests that understanding preferences over waiting

(time spent circling or in traffic) should be better understood

and perhaps, incorporated into regulatory policies that cap

parking prices.

In Figure 3, we show the total traffic flow (parking plus

throughput populations) for three different values of C1
p . It

can be seen that as C1
p increases, the flow shifts from being

evenly distributed between the two parking areas to largely

being in area 2 (the top area).

B. Example 2: Amazon Campus

The next example we explore is the effect of parking on

congestion in the region around Amazon’s headquarters. This

area has seen increased congestion over the last half decade

due to Amazon’s presence. We hold the total throughput

traffic fixed and increase the amount of parking traffic to

simulate a potential rush hour scenario as Amazon employees

are driving to work.

In Figure 4 we show the network graph along with a key

section of the network which has interesting routing behav-

iors that emerge as the proportion of parking-related traffic

increases relative to the volume of throughput traffic. All

traffic enters through the magenta nodes. The through traffic

travels (uniformly) to other magenta nodes and the parking

traffic travels to a parking area indicated by the boxed

magenta regions. The size of the magenta nodes indicates the

relative magnitude of both the throughput and parking traffic

coming from those nodes. For each parking region, we use

the queuing parameters shown in the following table:

Rp($)
Cp

w

($/min)
µp

(spots/min)
cp

(# spots)
Cp

p

($/min)
τ ($/hr)

100 0.1 1/120 50 0.01 30

We fix the total throughput traffic to be 75 cars/minute

distributed among the source nodes according to their relative

size and we vary the amount of parking traffic in the interval

[0, 300].

In Figure 5, we show the total flow, the throughput traffic

flow, and the parking flow for key edges in the graph

enumerated and depicted in Figure 4. We remark that the

throughput traffic decreases as parking traffic decreases in

the parking regions. Also, note how even links that are

significantly removed from the parking regions are affected

by parking traffic as the network adjusts to the demand.

Moreover, it is interesting to see that in while the through

traffic flow in Figure 5h increases along edges 13 − 15 for

the first several values of parking population, the parking

flow remains zero. This indicates that through traffic is being

rerouted to these edges to avoid parking traffic on some other

edges. This is similarly true for edge 9 (see Figures 5e and

5f) and edge 1 and 2 (see Figures 5b and 5c).
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Fig. 5. Total, through, and parking traffic flow for Example 2 (Amazon) along edges: (a)–(c) 1–4; (d)–(f) 5–10; (g)–(i) 11–15. See Fig. 4 for the edge
labels in the Amazon example.

In Figure 6 we show qualitatively how the network be-

comes more congested as the parking populations grow for

a fixed through-traffic population size. Of note is the fact

that increasing the parking population not only increases

congestion in and around parking areas, but can also have

adverse effects on arterial streets further removed the parking

areas. This is due to the fact that through traffic is rerouted

through previously un-congested streets.

V. DISCUSSION AND FUTURE WORK

We presented a novel routing game framework over

queue–flow networks that allowed us to capture the interac-

tion between populations of drivers seeking on-street parking

and populations of drivers flowing through an urban area.

Further, the combination of the routing game framework

with the queuing game gave us a computational tool for

analyzing the impact of circling traffic on congestion in large

and realistic flow networks.

The work in the paper is the first steps towards the

development of a modeling paradigm for urban mobility

that accounts for drivers having different objectives and

intended uses of transportation infrastructure. There is still

a significant amount of work to create a comprehensive

theoretical framework for queue–flow networks. In particular,

the routing game framework presented is inherently static

while the queuing model is inherently dynamic. We are

investigating dynamic routing game frameworks that can

more seemlessly integrate with the dynamic queueing model.

We are also formulating the pricing problem as a bilevel

optimization problem so that in this new dynamic frame-

work, we will be able to design dynamic pricing schemes

that more effectively take into account demand (which is

naturally time varying). We aim to extend the queuing

game framework to consider more interesting behaviors such

as jockeying between queues after the initial parking area

has been selected, balking to other modes of transit, and

reneging to off-street parking. Finally, in the near term, we

are working on incorporating more heterogeniety of different

populations into our framework so that we can consider a

range of user preference models that span very rich and



(a) (b) (c)

Fig. 6. Evolution of the congestion in the Amazon Campus area network as the parking populations increase. Through traffic population is fixed at 75
cars/min (a) No parking population (b) Total parking population of size 150 cars/min (c) Total parking population size of 300 cars/min.

diverse socioeconomic features that are representative of

urban spaces.
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