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Abstract—We consider a multi-agent system where each agent
has its own estimate of a given quantity and the goal is to
reach consensus on the average. To this purpose, we propose
a distributed consensus algorithm that guarantees convergence
to the average in a finite number of communication rounds.
The algorithm is tailored to ring networks subject to a gossip
constraint. If the number of agents m is even, say m = 2n, then,
the number of communication rounds needed is equal to n, which
in this case is the diameter of the network, whereas it grows to
3n if the number of agents is odd and equal to m = 2n+ 1.

Index Terms—Consensus, gossip algorithms, distributed aver-
aging, networks.

I. INTRODUCTION

A typical problem encountered in a multi-agent system is
that all agents are aiming at some common goal but they
can communicate only with their neighbors to this purpose.
Achieving a common goal often translates into reaching an
agreement on the value taken by some quantity (the agreement
variable) via some consensus algorithm. Basic consensus al-
gorithms date back to [1]. Only in the last two decades, they
have attracted the attention of both the computer science [2]
and control engineering [3] communities.

There are different forms of consensus. Here, we are con-
cerned with distributed averaging where each agent has its own
estimate of a certain quantity and the goal is to reach consensus
on the average of the values stored by all agents. The two
most common approaches in the literature to the distributed
averaging problem are linear iterations and gossip algorithms.
The former is an iterative scheme where each agent updates
its estimate of the average by taking a linear combination
of its current estimate and those received by its neighboring
agents, [4]. Gossip algorithms are similar, but they require
that only pairwise communication occurs, [5], [6]. In both
approaches, the interactions between agents can be modeled
as a time-varying weighted graph, with vertices and edges
respectively representing the agents and the communication
links, and weights assigned to edges being the coefficients
of the linear combinations. Under mild assumptions on the
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coefficients and on the structure of the graph across iterations,
both linear iterations schemes and gossip algorithms have been
proven to asymptotically converge to the average, [4]. Since
reaching consensus asymptotically can be limiting in practice,
there is a fair amount of literature on how to analyze and
optimize the convergence rate of both algorithms, see [4], [7]
and references therein.

Alternatively, one can adopt an algorithm that reaches
the exact average in finite time. The convergence rate can
be assessed in terms of number of communication rounds,
where a communication round is a time frame where possibly
multiple communications occur simultaneously. This measure
of convergence is practically quite meaningful since each
communication round requires a certain amount of time, while
internal computations are fast enough compared to communi-
cations to provide a negligible contribution.

In this paper we propose a finite time distributed consensus
algorithm for gossip-constrained ring networks, i.e., networks
that have a cycle graph with undirected edges and where
only pairwise communications are allowed. We next review
the main categories of finite time averaging algorithms in
Section I-A, and then clarify the contribution of our work
with respect to the existing literature in Section I-B.

A. Brief review of the literature on finite time averaging

Algorithms for finite time distributed averaging can be
classified in three main categories: flooding-based algorithms
where information is broadcasted across the network, routing-
based algorithms where information is routed to one leading
agent, and algorithms based on linear iterations, which can be
further distinguished into linear iterations with fixed weights
and linear iterations with time-varying weights. As pointed
out in [2], [4], [6], which propose algorithms belonging to the
first category, distributed average computation can be actually
solved in a finite number of communication rounds by making
each agent keep collecting all the values received and passing
them to its neighbors. After a number of communication
rounds equal to the diameter of the graph (i.e., the maximum
distance between any two vertices), every agent knows all the
values and can compute their average. This algorithm, albeit
simple, presents two main issues: i) the number of values that
each agent needs to store (and thus the memory usage) grows
linearly with the number of agents, and ii) an unnecessary
amount of information is exchanged which might overload the
communication channels. These issues are even more critical
when the quantities to be averaged are vectors instead of
scalars. The memory requirement imposed by the approaches



of [2], [4], [6] can be alleviated at the expense of an increased
number of communication rounds following [8], where the
authors consider a fixed network topology and develop an
algorithm based on a two-stage max-consensus scheme which
achieves finite time convergence in d(2m+1) communication
rounds, where d is the diameter of the graph and m is the
number of agents.

Other approaches that aim at limiting the memory require-
ments and the amount of information flowing in the network
are those based on the availability of a routing mechanism.
Typically, agents transmit all the information to a leader agent
which performs the overall average and then broadcasts it
back to all other agents, see e.g. convergecast, [9, Chapter 2].
In [10], [11], [12], the authors focus only on tree networks,
i.e., graphs without loops, and show how to reach finite time
convergence over these topologies. Note that, even though it is
always possible to construct a spanning tree (i.e., a tree which
reaches all vertices) from a connected graph by dropping
some links, the diameter of the resulting tree might be greater
than the diameter of the original graph, thus requiring more
communication rounds to reach convergence.

Much effort has then be devoted in the literature to design
simple algorithms (like linear iterations) that are able to solve
the distributed averaging problem in finite time, see [13], [14],
[15], [16], [17], [18], [19], [20] just to name a few. Most of
these works take a global perspective, in that they assume to
know the topology of the (undirected) graph, and then tune
the weights so as to achieve finite time convergence.

The works in [13], [14], [15], [16], [17] focus on time-
invariant networks with fixed weights. In [13] the solution
to the finite time averaging problem is given in terms of the
minimal polynomial of some matrix which gathers the weights
and matches the graph topology. Convergence is achieved in
D + 1 communication rounds, where D is the degree of the
minimal polynomial, provided that each agent stores all the
D + 1 previous values, which, however, might be impractical
for large networks. In [14], the authors show that if the
network is connected, then, for a class of fixed weights, the
agents are able to reconstruct the values of the other agents
and thus compute any function of the agents’ initial values
in a finite number of communication rounds. The work of
[15] aims at finding the minimum number of communication
rounds needed to construct the average by exploiting the
trajectories of the local variable being updated according to
a linear iteration scheme with non-designed weights. In [16]
the authors focus on directed graphs and show that finite
time average consensus can be achieved when the network
is strongly connected and each agent knows the number of
neighbors she is communicating with. All these approaches
require the network to be time-invariant and the agents to store
a certain amount of history of their local values. In [17] the
authors prove that for specific type of graphs (distance-regular
graphs) finite time averaging can be achieved in a number of
communication rounds equal to the diameter of the graph.

In [18], [19] the network is also assumed to be time-
invariant, but the weights (and thus the weight matrix) change
across communication rounds. In [18] an analytic solution
based on the joint diagonalization of the weight matrices is

provided, and it is shown that convergence can be achieved
in a number of communication rounds equal to the number
of distinct eigenvalues of the Laplacian matrix of the graph.
In [19] the time-varying weights are designed based on the
minimal polynomial of the adjacency matrix of the graph, and
the proposed procedure is shown to converge in a number of
communication rounds equal to the diameter of the graph for
any distance-regular graph. In [20] the finite time averaging
problem is treated as a nonlinear optimization program that
can be solved numerically, where the weights in the graph are
optimization variables. Finite time average can be achieved
in this case with a number of communication rounds that
ranges between d and 2d, where d is the diameter of the
network. However, agents have to solve a nonlinear program
in a distributed fashion, which might be difficult from a
computational point of view.

Finally, in [21], finite time averaging under the gossip
constraint has also been investigated. In particular, it is shown
that if the weights are constant and equal to 1/2, then finite
time convergence on undirected graphs can be achieved only
if i) an agent can communicate with any other agent (i.e.,
any link can be activated if needed) and ii) the number
of agents can be written as m = 2p for some p. In this
case, finite time convergence can be achieved in p = log2m
communication rounds, each one involving multiple disjoint
pairwise communications.

B. Contribution of this paper
In this work we are concerned with the design of a finite

time averaging algorithm specifically tailored to a ring topol-
ogy, subject to a gossip constraint. Our approach is based on
linear iterations with time-varying weights on a time-varying
topology. By allowing the weights of the communication
graph to be time-varying, we are able to prove finite time
convergence for a network with an arbitrary number of agents.
More specifically, for ring networks with an even number of
agents, we propose a synchronous algorithm that converges
in finite time equal to the diameter of the graph, which is
also the lower bound on the number of communication rounds
needed for a ring graph with no gossip constraint. As for ring
networks with an odd number of agents, an algorithm based on
the case of an even number of vertices is designed. Finite time
convergence to the average is still guaranteed in a number of
communication rounds that scales linearly with the number of
agents. In this case, however, the lower bound is not attained.
As for memory requirements, each agent needs to store only its
estimate of the mean when the total number of agents is even,
whereas the memory requirement is doubled in the odd case.
In both cases, the required memory allocation is independent
of the number of agents.

In comparison with algorithms based on flooding like [2],
[4], [6] we impose fewer memory requirements that do not
increase with the number of agents. In contrast to memory
saving solutions like [8] and [9, Chapter 2] our approach
achieves convergence in fewer communication rounds, without
requiring any routing mechanism. As already discussed, tree-
based strategies like [10], [11], [12] can be applied to con-
nected graphs and account for gossip constraints (in particular,



see [10]). However, they present two main limitations: i) an
additional distributed procedure is needed to construct the tree,
and ii) the resulting graph has typically a larger diameter than
the original connected one, resulting in a larger number of
communication rounds required to achieve convergence. Due
to the gossip constraint, works based on linear iterations with
time-invariant topology and constant coefficients like [13],
[14], [15], [16], [17] are not applicable. Contributions like
[18], [19] achieving finite time convergence are based on a
time-invariant topology but allow for time-varying coefficients.
However, in both papers the coefficients are taken to be
identical for all agents, and hence gossip communications are
not allowed.

Finally, in contrast to the undirected case in [21], we
allow for time-varying weights, each agent does not need to
communicate with any other agent, and finite time convergence
is attained on a ring network with an arbitrary number of
agents, not only a power of two.

Note that our approach is tailored to the case of ring
networks with synchronous communications, where the total
number of agents m is known to everybody. This set-up can
be achieved by some preliminary interactions between agents,
see, e.g., [22] for some results in this direction.

C. Structure of the paper

The rest of the paper is organized as follows. In Section
II, we introduce the problem set-up with the ring topology
and the gossip constraint. The proposed distributed averaging
algorithms for the cases of even and odd number of agents
are described in Section III, where finite time convergence
and related bounds on the number of communication rounds
are also shown. Section IV presents two numerical examples,
and finally, Section V draws some concluding remarks.

II. PROBLEM SETUP

We address the case of a multi-agent system characterized
by a ring communication network, where each agent can
communicate only with one of each neighbors at a time (gossip
constraint). The agents are m in total and each one is identified
by an integer i taking values in {1, 2, . . . ,m}. Each agent i
has its own estimate xi(0) of some quantity of interest. The
goal is to devise a distributed algorithm through which each
agent is able to compute the average

x̄ =
1

m

m∑
i=1

xi(0), (1)

in a finite number of communication rounds only by ex-
changing information with its neighbors under the gossip
communication protocol defined in the sequel. Evidently, only
the case with m > 2 is of interest.

The network communication structure can be represented
as an undirected graph G = (V, E), where V = {1, . . . ,m} is
the set of vertices representing the agents, and E is the set of
edges, defined as the following collection of ordered pairs of
vertices:

E =

m−1⋃
i=1

{(i, i+ 1), (i+ 1, i)} ∪ {(1,m), (m, 1)},

according to the ring topology. Since we are dealing with
an undirected graph, with a slight abuse of notation we will
use (i, j) to denote both edges (i, j) and (j, i). According
to this notation, for m > 2, the number of edges is even if
m is even, and odd otherwise. The consecutive numbering
of the vertices in the cycle graph is introduced to ease the
algorithm description, e.g., by simplifying the definition of
the predecessor and successor neighbor.

We next define the communication protocol used by the
agents to exchange information over the network. We are
here concerned with the design of a synchronous pairwise
communication strategy. As introduced in Section I, the agents
communicate in rounds. At each round, every agent is al-
lowed to communicate only with one of its neighbors (gossip
constraint). Since communication channels are represented by
the edges of G, the design of the communication protocol
reduces to specifying a proper sequence of edges to activate,
where edge (i, j) is said to be active at a given round if
agents i and j exchange information at that round. As in
the multigossip framework [11], more edges may be active
at the same communication round, as long as they do not
have any vertex in common so as to comply with the pairwise
communication constraint.

To reduce the number of communication rounds we need
to parallelize as much as possible the number of simultaneous
pairwise communications. This can be interpreted as an edge-
coloring problem on G, [11], where edges with the same color
represent communication channels which can be active at the
same time. For a ring communication network with an even
number m > 2 of vertices we need just two colors to minimize
the number of communication rounds needed for all edges to
be activated while satisfying the gossip constraint. In the odd
case we need at least three colors. Figure 1 shows the coloring
scheme for the even case in a pictorial form, with two groups
of edges characterized by two different colors, blue and red,
that can be activated alternatively in subsequent rounds, e.g.,
all the blue straight edges are activated at rounds 1, 3, . . . ,
whereas the red wavy ones at rounds 2, 4, 6 . . . .

It is worth noticing that in our approach, for a ring network
with an even number of agents, the number of communication
rounds coincides with the number of iterations of the proposed
algorithm, as is usually the case in linear iteration schemes.
Instead, for a ring network with an odd number of agents,
this is no longer the case since each agent is artificially split
into two subagents connected by a virtual link to get back
to the even number of agents case. In this case, however, the
iterations of the proposed algorithm that involve subagents
communicating with their subagent neighbor actually encom-
pass three communication rounds in order to meet the gossip
constraint (see Section III-B).

Finally, we need to specify the weights associated with
the edges, which define the linear update of the agents local
estimate of the mean based on the information received from
its neighbors. To this end, assume that at iteration k, agents
i and j communicate. Agent i performs then the following
update for its local estimate of the mean:

xi(k) = (1− αk)xi(k − 1) + αkxj(k − 1), (2)
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Fig. 1. Communication protocol under the gossip constraint in the case of
an even number of agents: edges are grouped in two sets by a color coding.
Only edges with the same color are active simultaneously.

where αk is the (time-varying) weight associated with edge
(i, j) at iteration k entering the convex update rule. Agent j
performs an analogous update step.

The problem to be addressed is how to appropriately select
αk, k = 1, 2, . . . , so as to guarantee that there exists a finite
iteration T such that xi(T ) = x̄ for all i = 1, . . . ,m, where x̄
is given by (1). Iteration k will possibly involve more than one
communication rounds if needed to meet the gossip constraint.

III. PROPOSED SOLUTION

We next provide a solution to the finite time distributed
averaging problem over a ring network topology with pair-
wise communication constraints as described in the previous
section. In particular, we shall define which edges are activated
at each communication round and appropriately set the values
for the αk weights in the update rule (2) to achieve finite time
convergence of all agents’ estimates to the average (1).

We will first address the case when the number of agents
in the ring is even, and then we will extend the result to rings
with an odd number of agents.

A. Ring with an even number of agents

For a ring with an even number of agents (m = 2n), the
coefficients of the linear combination can be chosen according
to the following rule:

αk =


k

k+1 , 1 ≤ k < n
1
2 , k = n

0, k > n

(3)

which due to (2) entails that the estimate is kept constant after
k = n steps and hence the iterative process can be terminated.

The distributed overall procedure is obtained by making
each agent run Algorithm 1 synchronously with the others.
Algorithm 1 involves alternatively communicating with the
predecessor and successor neighbor in the ring topology
(according to the agent indexing shown in Figure 1), while
updating its estimate according to (2) with the coefficients
of the convex combination defined as in (3). Agents should
agree on the neighbor to communicate with at the first
iteration, i.e., which of the two edge groups of Figure 1
should be simultaneously activated. This choice is actually

Algorithm 1 Algorithm for agent i – m even
1: xi(0)← initial value for agent i
2: for k = 1 to n do
3: % Select a neighbor to communicate with
4: if i+ k is even then
5: j ← Post(i)
6: else
7: j ← Pre(i)
8: end if
9: % Update the estimate using (2) and (3)

10: xi(k)← (1− αk)xi(k − 1) + αkxj(k − 1)
11: end for
12: return xi(n)

embedded in Algorithm 1 (line 4) and it is simply based
on the agent identification number i. Functions Post,Pre:
{1, 2, . . . , 2n} → {1, 2, . . . , 2n} in Algorithm 1 serve the
purpose of specifying the successor and predecessor neighbor,
respectively, and are given by:

Post(i) =

{
i+ 1, i = 1, . . . , 2n− 1

1, i = 2n
(4)

and

Pre(i) =

{
2n, i = 1

i− 1, i = 2, . . . , 2n.
(5)

According to Algorithm 1, at iteration k = 1 agent i = 1
communicates with its successor agent 2, and, hence, the blue
colored edges in Figure 1 are activated.
The following theorem holds for the proposed distributed
scheme.

Theorem 1 (Finite time consensus). Given a ring network with
m = 2n agents, suppose that all of them apply Algorithm 1
synchronously, with weights αk, k ≥ 1, defined as in (3). Then,
after n communication rounds, the estimate xi computed by
each agent i, i = 1, 2, . . . , 2n, equals the average of their
initial values (1).

Proof. To ease the notation throughout the proof, we will use
xi+s as a shorthand for xk, k = Post(Post(· · ·Post(i))) with
Post(·) applied s times, and, similarly, xi−s for Pre(·).

Our aim is to show that by applying Algorithm 1 to a ring
with 2n agents we get

xi(n) =
1

2n

2n∑
j=1

xj(0), (6)

for every agent i, i = 1, 2, . . . , 2n.
Actually, it suffices to show that (6) holds for those i such

that i + n is even (i.e., i even if n is even, odd if n is odd).
Indeed, according to Algorithm 1, agent i+ 1 (for which i+
1 + n is odd) communicates with agent i at step k = n and
its estimate satisfies

xi+1(n) = (1− αn)xi+1(n− 1) + αnxi(n− 1),

which is equal to xi(n) = (1−αn)xi(n−1)+αnxi+1(n−1)
given that αn = 1

2 . Hence, if xi(n) satisfies (6), then xi+1(n)
does as well.



We shall focus then on agent i such that i+ n is even, and
prove that the following equation hold

xi(n) =
1

2n

i+s∑
j=i−s+1

xj(n− s− 1)

+
n− s

2n

[
xi−s(n− s− 1) + xi+s+1(n− s− 1)

]
, (7)

for all s = 1, . . . , n− 1. Note that, by substituting s = n− 1
in (7), we get (6), which concludes the proof of the theorem.

The proof of equation (7) is by induction, i.e., we show that
it is true for s = 1 (step 1), assume that it holds for some s
(induction hypothesis), and then show that this is also the case
for s+ 1 (step 2).

Step 1: By Algorithm 1,

xi(n) =
1

2
xi(n− 1) +

1

2
xi+1(n− 1). (8)

At step k = n− 1, we have that i+ k = i+ n− 1 is odd and
i+ 1 + k = i+ n is even, hence

xi(n− 1) =
1

n
xi(n− 2) +

n− 1

n
xi−1(n− 2), (9)

xi+1(n− 1) =
1

n
xi+1(n− 2) +

n− 1

n
xi+2(n− 2), (10)

and, by substituting (9) and (10) into (8), we obtain

xi(n) =
1

2n

[
xi(n− 2) + xi+1(n− 2)

]
+
n− 1

2n

[
xi−1(n− 2) + xi+2(n− 2)

]
.

which is (7) with s = 1.

Step 2: For the sake of clarity we will treat the two terms
in (7) separately: the summation first and then the other term.

First term: Let us start by considering the first two contri-
butions in the summation, that is:

xi−s+1(n− s− 1) + xi−s+2(n− s− 1). (11)

By Algorithm 1 when k = n−s−1 (and, hence, i−s+1+k =
i+n− 2s is even and i− s+ 2 + k = i+n− 2s+ 1 is odd),
we get

xi−s+1(n− s− 1) =
1

n− s
xi−s+1(n− s− 2)

+
n− s− 1

n− s
xi−s+2(n− s− 2), (12)

xi−s+2(n− s− 1) =
1

n− s
xi−s+2(n− s− 2)

+
n− s− 1

n− s
xi−s+1(n− s− 2). (13)

Substituting (12) and (13) into (11) we get that

xi−s+1(n− s− 1) + xi−s+2(n− s− 1)

= xi−s+1(n− s− 2) + xi−s+2(n− s− 2). (14)

The time-invariance property for the pairwise summation in
(14) holds true for all other pairs in the summation of the first

term in (7), which always contains an even number of terms,
i.e., 2s. We can thus conclude that

i+s∑
j=i−s+1

xj(n− s− 1) =

i+s∑
j=i−s+1

xj(n− s− 2). (15)

Second term: Now consider the second term in (7), which
is reported here for ease of reference:

n− s
2n

[
xi−s(n− s− 1) + xi+s+1(n− s− 1)

]
. (16)

By Algorithm 1 when k = n− s− 1 (and, hence, i− s+ k =
i + n − 2s − 1 is odd, while i − s + 1 + k = i + n − 2s is
even), we have that

xi−s(n− s− 1) =
1

n− s
xi−s(n− s− 2)

+
n− s− 1

n− s
xi−s−1(n− s− 2), (17)

xi+s+1(n− s− 1) =
1

n− s
xi+s+1(n− s− 2)

+
n− s− 1

n− s
xi+s+2(n− s− 2). (18)

Substituting (17) and (18) into (16), (16) reduces to
1

2n

[
xi−s(n− s− 2) + xi+s+1(n− s− 2)

]
+
n− s− 1

2n

[
xi−s−1(n− s− 2) + xi+s+2(n− s− 2)

]
.

(19)

Finally, substituting (15) and (19) into (7), which holds true
by the induction hypothesis, we have that

xi(n) =
1

2n

i+s+1∑
j=i−s

xj(n− s− 2)

+
n− s− 1

2n

[
xi−s−1(n− s− 2) + xi+s+2(n− s− 2)

]
,

which is the same expression as (7) with s+ 1 in place of s,
thus concluding the proof by induction of (7).

Remark 1 (Speed of convergence). Based on [17], the min-
imum number of communication rounds needed to achieve
finite time convergence on a fixed ring topology with 2n
agents is equal to the graph diameter n. Under the gossip
constraint, such a bound cannot be improved. This implies that
the result of Theorem 1, which shows that we need exactly
n communication rounds to converge to the average in ring
networks with an even number of agents, is tight. To the
best of our knowledge, this outperforms existing results in
the literature.

Remark 2 (Efficiency). Since at each iteration every agent
communicates with a single agent only, the information
transmitted in the proposed distributed algorithm is limited
compared to alternative solutions in the literature with either
fixed or time-varying topology without gossip constraints.

Remark 3 (Interpretation). At iteration k, the update of agent
i, i = 1, . . . ,m, in (2) can be alternatively written as

xi(k) = xi(k − 1)− αk(xi(k − 1)− xj(k − 1)). (20)
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Fig. 2. Examples of communication protocols in a ring with an odd number
of agents (m = 7): edges with the same colors are activated simultaneously.
Three rounds are needed to activate all edges in both protocols.

By inspection of (20), it can be observed that the estimate of
the average that each agent maintains evolves as a discrete
time integrator, where the quantity that gets integrated is
the mismatch between the communicating agents’ estimates,
weighted by αk. This can be thought of as the evolution of
a closed-loop dynamical system, with the feedback gain fixed
according to (3). The interpretation of Theorem 1, is that the
dynamical system (20), reaches x̄ at the n-th step, for all
i = 1, . . . ,m.

B. Ring with an odd number of agents

In the case of an odd number m = 2n + 1 of agents, we
have to define a proper sequence of mode activations, thus
choosing a coloring scheme for the ring. As stated earlier in
Section II, for the odd case we need at least three colors for
all edges to be activated in the minimum number of rounds
while satisfying the gossip constraint. Whilst in the case of
a ring with an even number of agents the coloring scheme is
essentially unique (the solutions where two colors are swapped
are indeed equivalent, see Figure 1), with three colors we can
have multiple coloring configurations. To better clarify this
observation, in Figure 2 we report two examples of a coloring
scheme with three colors (cyan, yellow and green) for m = 7,
which translates into two different multigossip sequences for
the agents’ communication. Interestingly, the solution that we
propose in this paper does not depend on the adopted coloring
scheme, which can be arbitrarily chosen but has to be agreed
upon execution of the algorithm.

The solution for the case of an odd number of agents
is based on the idea of making the number of agents even
by considering each agent i as if it were composed by two
subagents, say ia and ib, which can communicate with the
predecessor and successor neighbor of agent i respectively,
and are connected together by a virtual communication link.
The communication link is virtual because it does not require

12 7

1a1b2a 7b

Fig. 3. Example of subagents and virtual communication links. Original
agents are represented as dashed ellipsoids and virtual links as black dotted
lines.

Algorithm 2 Algorithm for agent i – m odd
1: xia(1) = xia(0)← initial value for agent i
2: xib(1) = xib(0)← initial value for agent i
3: k ← 2
4: while k ≤ m do
5: % Communication rounds
6: for r = 1 to 3 do
7: if edge (i,Post(i)) is active then
8: % Communicate with neighbor Post(i)
9: j ← Post(i)

10: xib(k)← (1− αk)xib(k − 1) + αkxja(k − 1)
11: else if edge (i,Pre(i)) is active then
12: % Communicate with neighbor Pre(i)
13: j ← Pre(i)
14: xia(k)← (1− αk)xia(k − 1) + αkxjb(k − 1)
15: else
16: % Stand by
17: end if
18: end for
19: k ← k + 1
20: % Update local estimates
21: xia(k)← (1− αk)xia(k − 1) + αkxib(k − 1)
22: xib(k)← (1− αk)xib(k − 1) + αkxia(k − 1)
23: k ← k + 1
24: end while
25: return xia(m)

any actual communication, but just a computation step for
agent i. Figure 3 represents a pictorial view of this principle
with reference to agent i = 1 of the ring network on the left of
Figure 2. Original agents are represented as dashed ellipsoids
and virtual links as black dotted lines.

Algorithm 2 describes the steps performed by agent i. Note
that each agent maintains two estimates that are updated based
on the information received from its successor and predecessor
neighbor (steps 10 and 14) and are then combined when the
virtual edge is activated (steps 21 and 22). Note also that αk

in Algorithm 2 must be chosen according to (3) with m in
place of n.

Steps 10 and 14 require three communication rounds to be
performed due to the gossip constraint (see the loop defined by
steps 6-18 in Algorithm 2). In particular, in order for agent i to
perform step 10 of Algorithm 2, she needs to wait the commu-
nication round in which the edge (i,Post(i)) is active. Same
reasoning applies to step 14 of Algorithm 2, which requires to
wait the communication round in which the edge (i,Pre(i))
is active. Finally, in one of the three rounds agent i is just
stand by, whilst some other pairs of agents are communicating.
Consider for example the communication protocol described in
the left panel of Figure 2 with links activated in the following
order: 1) cyan straight, 2) yellow wave, and 3) green spring.
Then, in the first round (r = 1 in Algorithm 2) agent i = 1
communicates with agent Post(1) = 2, in the second round
(r = 2) with agent Pre(1) = 7, and in the third round (r = 3)
with no agent.



Theorem 2. Given a ring network with m = 2n + 1 agents,
suppose that all of them apply Algorithm 2 synchronously,
with weights αk, k ≥ 1, defined as in (3) with n replaced by
m. Then, after 3n communication rounds, the estimates xia
and xib computed by each agent i, i = 1, 2, . . . ,m, equal the
average of their initial values (1).

Proof. Consider the virtual network where each agent i is
composed by two subagents, say ia and ib, which can commu-
nicate with the predecessor and successor neighbor of agent
i respectively, and are connected by a virtual communication
link. The topology of the virtual network is still a ring, but it
now has an even number (i.e., 2m) of agents. Moreover, by
setting

xia(0) = xib(0) = xi(0), (21)

the average of the initial values of the 2m subagents equals
the average of the initial values of the original m agents. By
relabeling the subagents with numbers from 1 (for subagent
1a) to 2m (for subagent mb), one can recast this problem to the
framework of Section III-A and apply Theorem 1 to complete
the proof.

To this purpose, three observations are in order:

1) The initialization steps 1 and 2 are equivalent to steps 21
and 22 with k = 1 due to (21). In principle, these
latter two steps would involve a communication between
subagent ia and subagent ib, which, however, is virtual
since subagent ia and subagent ib are both the same,
namely, agent i. This virtual communication performed
synchronously by all agents would correspond to activate
one set of links (e.g., blue straight links with reference
to Figure 1) in the virtual ring network.

2) Consider steps 10 and 14 inside the for loop of Algo-
rithm 2. After three communication rounds (indexed by
r = 1, . . . , 3), each subagent ib has communicated with
subagent ja, with j = Post(i). These 3 communication
rounds occur within the same iteration k, since k is
incremented only after the for loop, and correspond to
activating the other set of links (e.g., red wavy links with
reference to Figure 1) in the virtual ring network.

3) Consider now steps 21 and 22. As pointed out already
in observation 1, no actual communication is needed
between subagent ia and ib, and this virtual communi-
cation corresponds to activating the blue straight links in
Figure 1 of the virtual ring network.

These three observations reveal that the execution of Algo-
rithm 2 on the ring network with m agents is equivalent to
the execution of Algorithm 1 on the virtual ring network with
2m agents, where the two networks have the same average
of the initial values. By applying Theorem 1 to the virtual
ring network, we obtain the average in a finite number m
of iterations (indexed by k in Algorithm 2), alternating the
edge activation as in Figure 1 with 2m in place of m, with
the blue straight links being replaced by the black dotted lines
representing the virtual links (no actual communication round),
and the red wavy links representing the actual communication
links, which with reference to Figure 2, are the cyan, the

yellow and the green ones, and have to be activated in three
communication rounds to comply with the gossip constraint.

Among the m updates required by Algorithm 2 to converge,
the first one corresponds to the initialization steps 1 and 2,
and the remaining m − 1 = 2n are performed inside the
main loop of Algorithm 2. Since in each loop the index k
is updated twice, we have that the code inside the main loop
of Algorithm 2 is executed (m−1)/2 = n times. Therefore we
have n virtual communications (steps 21 and 22) and n actual
communications involving 3 rounds each due to the gossip
constraint (see steps 14 and 10). Thus, the overall number of
communication rounds to achieve convergence to the average
is 3n, which concludes the proof.

IV. NUMERICAL EXAMPLES

In this section we apply our algorithms to two numerical
examples: a ring network with an even number me = 6 of
agents and a ring network with an odd number mo = 7 of
agents, so that n = 3 in both examples. In both cases, xi(0),
i = 1, . . . ,m are scalar values.

In the even case, for all i = 1, . . . ,me, we sampled xi(0)
from a uniform distribution with support [0, 1] and applied
Algorithm 1 together with the communication protocol of
Figure 1, with m = me = 6. Figure 4 shows the evolution
of the xi(k) sequences across iterations. In accordance with
Theorem 1, the average of the initial values (depicted as a red
triangle) is reached in n = 3 iterations. Note that in this case
iterations and communication rounds coincide.

In the odd case, for all i = 1, . . . ,mo, we sampled xi(0)
from a uniform distribution with support [0, 1], and applied
Algorithm 2 together with the communication protocol de-
picted in Figure 2 (left panel). Figure 5 shows the evolution of
the xia(k) and xib(k) sequences across iterations (sequences
related to the same agents have the same color, and that of
agent 1 is highlighted). In accordance with Theorem 2, the
average of the initial values (depicted as a red triangle) is
reached in mo = 7 iterations and only 3n = 9 communications
rounds are required. Note that in this case iterations and
communication rounds do not coincide: at iteration k = 2
of Algorithm 2 we have three communication rounds taking
place. Indeed, not all values change at the same time; the ones
corresponding to agents that are not communicating remain
constant, whereas at iteration k = 3 the virtual links are
active, implying that all values are updated locally and no
real communication takes place.

V. CONCLUSIONS

In this paper we proposed an algorithm for finite time
distributed averaging in the case of a ring network of agents,
subject to a gossip constraint on communications. Interest-
ingly, if the number of agents is even, consensus to the
actual average is achieved in the minimum possible number
of iterations, i.e., the diameter of the network, whereas the
number of iterations needed in the case where the number
of agents is odd is higher, but still finite. Numerical examples
were also presented to demonstrate the efficacy of the proposed
solution. Besides being of interest on its own, the proposed



algorithms can also be embedded in distributed optimization
schemes where computing the average is instrumental to
solving the optimization problem (see e.g. [23]) and finite
time convergence is then a requirement. These optimization
schemes have been further developed and tailored to large
scale systems in new application areas like energy system [24],
which could benefit from a distributed finite time averaging
algorithm.

Admittedly, our algorithm is tailored to ring networks.
The extension to more general network structures is not
straightforward – except for the case where a cycle contain-
ing all vertices can be detected, which is however an NP-
complete problem, [25, Chapter 9] – and requires additional
investigation. Also, we assume synchronous communications
as most of the literature on distributed averaging. Allowing for
asynchronous communication protocols is a further interesting
topic of research.
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Studi di Brescia, Italy (1998). From 1998 to 2000
she was a postdoctoral researcher at the Department
of Electrical Engineering and Computer Sciences,
University of California at Berkeley. She also held
visiting positions at Delft University of Technology
(1998), Cambridge University (2000), University of
California at Berkeley (2005), and Swiss Federal

Institute of Technology Zurich (2006). In 2002, she started as an assistant
professor in systems and control at Politecnico di Milano, where she is
currently an associate professor. Her research interests include stochastic
hybrid systems, randomized algorithms, constrained control, system abstrac-
tion and verification, nonlinear identification, distributed optimization, and the
application of control theory to air traffic management and energy systems.
She serves on the editorial board of Cyber Physical Systems, and previously of
European Journal of Control, IEEE Transactions on Automatic Control, IEEE
Transactions on Control Systems Technology and Nonlinear Analysis: Hybrid
Systems. From 2013 to 2105, she has been editor for Electronic Publications
of the IEEE CSS. She is member of the IEEE CSS Board of Governors, and
since January 2016 she is CSS Vice-President for Conference Activities.


