
UnCoVer

Unifying Control and Verification

of Cyber-Physical Systems

(UnCoVerCPS)

WP1 Modelling and Conformance Testing

D1.3 – Report on Conformance Testing in the Development Process

WP1 D1.3 – Report on Conformance Testing in the Devel-

opment Process

Authors Alexander Rausch, Jens Oehlerking - Bosch

Short Description This deliverable gives the collected results on conformance test-

ing. This includes a discussion about classical model-based and

UnCoVerCPS development processes, a survey on conformance

testing, updated results on the automated driving use case and

a procedure for automated test generation based on Bayesian

optimization.

Deliverable Type Report

Dissemination level Public

Delivery Date 30 Dec 2018

Contributions by Bosch, TUM, DLR

Internal review by Maria Prandini (PoliMi), Geoff Peggman (RUR), Matthias

Althoff (TUM)

Document history:

Version Date Author/Reviewer Description

1.0 19.12.18 Alexander Rausch Final version

CONTENTS

Contents

1 Overview 4

2 Conformance Testing Survey 6

2.1 Introduction . 6

2.2 Preliminaries . 8

2.3 Principles of Discrete and Timed Conformance, and Concerns of CPS 11

2.4 Conformance Relations . 13

2.4.1 Trace conformance relations . 14

2.4.2 Approximate trace conformance relations 17

2.4.3 (Bi-)simulation relations . 20

2.4.4 Approximate simulation relations . 21

2.4.5 Reachset conformance relation . 23

2.5 Comparison . 25

2.5.1 Choice of conformance relation . 25

2.5.2 Simulation vs. Trace Conformance vs. Reachset Conformance 26

2.5.3 Approximate language inclusion vs. (τ, ε)-closeness vs. Skorokhod

conformance . 27

2.5.4 Approximate trace relations vs. approximate simulation 29

2.6 Input Selection for Conformance Testing . 30

2.7 Conclusion . 32

3 Conformance Testing in the Development Process 33

3.1 Non-deterministic Models . 33

3.2 Conformance Checking . 34

3.3 Input Generation and Test End Criteria . 34

3.4 Identification of Conformant Models . 35

3.5 Summary . 36

4 Conformance Testing Methods in UnCoVerCPS 36

4.1 New Algorithm to Identify Reachset Conformant Models 37

4.2 Automated Conformance Test Case Generation 39

4.2.1 Search-based Conformance Testing . 39

4.2.2 Conformance Robustness Metric for Reachset Conformance Testing . 40

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

2 of 78

CONTENTS

4.2.3 Bayesian Optimization for Test Generation 41

4.3 Test Coverage as a Test End Criterion . 43

5 Application of Conformance Testing Methods to the Automated Driving

Use Case 45

5.1 Identification of Conformant models for the DLR vehicle 45

5.1.1 Summary of Measurement Setup for Physical DLR Vehicle 45

5.1.2 Taylor Vehicle Model and Non-deterministic Error Structure 46

5.1.3 Experimental Results . 48

5.1.4 Conclusions . 52

5.2 Search-based Conformance Testing for AD use case 52

5.2.1 Overview . 53

5.2.2 Experimental Setup . 53

5.2.3 Experimental Results . 56

6 Conclusions 71

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

3 of 78

1 OVERVIEW

1 Overview

This deliverable consolidates the results on conformance testing within UnCoVerCPS. In

particular:

• we give an in-depth survey on conformance testing for cyber-physical systems to cover

the large body of work in this field in Section 2,

• we discuss how conformance testing relates to tasks within the typical automotive

development process in Section 3, and

• we describe the conformance testing methods that were used within UnCoVerCPS in

Section 4,

• we give an update on the conformance testing for the automated driving use case (as

described in Deliverable 5.2) in Section 5.

In the following, we will discuss conformance testing with respect to the UnCoVerCPS

approach, i.e., online hybrid systems verification as part of the decision making of a control

algorithm. However, from a conformance testing standpoint, it is not relevant whether

conformant models are used in an online or an offline verification scheme. In general,

conformance testing deals with providing formalized properties of models which can be reused

in any verification scheme. In the following we will therefore discuss conformance testing

of physical models in the general setting, which means that all results also apply to the

UnCoVerCPS approach.

Model-based engineering as used in industrial practice typically does not use formal

properties of physical models to show the safety of systems. Instead models are typically used

in other roles. This includes simulation models for closing the loop in model-, software-, or

hardware-in-the-loop testing. While such simulations can be part of a safety argument, ”hard”

arguments on model quality are not always used. Instead there is a much heavier reliance

on data from the actual physical systems for the actual safety argument. Another use for

models in classical model-based software engineering is in control, for example embedded in

a feed-forward or model-predictive controller to improve control performance. Also in this

setting, the models typically do not play a central role in the safety argument, which may

be obtained through black-box testing or dedicated safety mechanisms that may overrule

the models. This is in contrast to the UnCoVerCPS approach, where the safety argument

explicitly relies on formal verification approaches applied to these models. This is the case

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

4 of 78

1 OVERVIEW

both for online and offline verification approaches, as the verification result is always relative

to the models that are used.

This necessitates a means for arguing the model quality on which the hybrid systems

verification techniques hinge. Since the argument is ultimately based on observations from the

real system, this cannot be a formal verification approach, but it must be a testing approach,

which we call conformance testing.

In the following we use the following terms:

• conformance checking : Given a model and a set of observations of the real system,

conformance checking shows that these observations conform to the model.

• conformance testing : Given a model, produce a set of observations of the real system

that are sufficient to argue that the model is in fact conformant to the real system. This

includes the automatic selection of new test cases according to some strategy (test input

selection).

• identification of conformant models: From a parameterized class of models, identify a

conformant model which is useful for verification and/or control.

Conformance checking is rather straightforward, as it only requires checking each observa-

tion one by one with respect to some conformance notion. Conformance testing as defined

above is already difficult. Firstly, it is desirable to have a good heuristic for automated

test selection, leaning towards tests which challenge the model. Secondly, it is typically not

clearly defined what is ”sufficient to support the safety argument.” This leads to test coverage

arguments or statistical arguments over the set of observations. On top of this, identification

of conformant models necessitates an exploration of the design space. Typically there is a

tradeoff between the robustness of a conformance property and the usefulness of the model.

Models permitting all kinds of behavior are conformant to a large class of observations but are

not very useful for verification and control, as the results would be extremely conservative. In

general, this can be seen as a multi-objective optimization problem put on top of conformance

testing. Which conformant model on the resulting Pareto front is preferable depends on its

intended use, including the verification algorithm to be used.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

5 of 78

2 CONFORMANCE TESTING SURVEY

Figure 1: The V-process characterization of model-based design.

2 Conformance Testing Survey

This section gives a detailed survey on conformance testing for cyber-physical systems. This

includes special considerations for the cyber-physical domain (as opposed to purely discrete

systems), conformance notions, transference of properties, as well as methods from the

literature for test generation. The survey was compiled alongside the work in UnCoVerCPS

and forms the basis for the conformance testing methods developed within the project.

This survey is currently under review for the ACM Transactions on Cyber-Physical

Systems.

2.1 Introduction

In the field of cyber-physical systems (CPS), the de facto standard for software development

is model-based design. While models for software and physical components have mostly been

developed separately in the past, the trend towards CPS design has led to models with mixed

discrete and continuous dynamics – so called hybrid models. Discrete and continuous models

have severe differences – not only in their syntax and semantics – but also in the principles

used to obtain those models. The combination of discrete and continuous parts in one model

is also called a hybrid system, of which the electro-mechanical brake [122] is an example.

The V-process characterizes the different development steps of a model-based design, as

visualized in Figure 1. Starting with abstract requirements at the top left side of the V, the

requirements are successively refined leading to a system architecture, detailed specification,

and implementation models. Finally, this leads to the implemented code, shown at the bottom

of the V. In the end, the requirements have to hold on the implementation. From unit test of

implementation models to the abstract requirements from the beginning (advancing the top

right side of the V), the implementation has to meet the expectations.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

6 of 78

2 CONFORMANCE TESTING SURVEY

Throughout the design process, a plethora of models of the system itself or its environment

are developed with a variety of purposes and on a variety of abstraction levels. In order to

reduce the testing effort on the actual cyber-physical system, it is desirable to conduct as

much testing as possible on these models throughout the development process. However, in

order to achieve this, test results on more abstract models earlier in the process must be

transferable to some extent to the actual system – the models need to be conformant to

one another in some sense. However, this is still difficult to achieve in practice, due to the

number of modeling tools and paradigms, the non-existence of formal semantics for many of

the models, and the variety of system aspects covered in different abstractions.

From an industrial standpoint, there are various uses for conformant models on different

abstraction levels: “frontloading” of testing in the design process, capturing system variability

by providing different concretizations of the same abstract model, regression testing after

incremental changes to the system, et cetera. The challenges that need to be overcome

include the fact that formal methods in the cyber-physical domain only scale to very abstract

models, the prevalence of black-box models which just exist as a compiled binary, and the

necessity to eventually relate models to physical systems which can only be observed through

measurements.

We call the ability to transfer properties from one model to another transference, and one

way of achieving this is by establishing formal links between models on different levels. We

call these formal links conformance relations. In this report, we survey different conformance

relations proposed in the literature for cyber-physical systems, their transference properties

and approaches for systematic testing for showing that these relations hold between given

models or between models and systems.

Conformance relations for discrete systems have already been studied in detail in the

literature [26, 71, 117], and can be used to support formal reasoning, e.g. showing that a

system implements a specification. However, the useful abstraction to discrete systems is

difficult for large classes of cyber-physical systems and properties, e.g. complex control loops,

as these abstractions will typically end up being too complex to handle both by verification

tools and the humans dealing with these models. For such systems continuous-time and

continuous- or hybrid-valued abstractions are often both more natural and more useful.

A variety of different conformance relations for cyber-physical systems have been proposed

in the literature. Aerts et al. [8] provide a brief overview about model-based testing and

conformance relations for hybrid systems. However, it does not attempt to be a comprehensive

survey on the subject. The goal of our survey is to provide a detailed discussion about existing

notions of conformance, which does not exist in the literature, to our best knowledge. Besides

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

7 of 78

2 CONFORMANCE TESTING SURVEY

Abstract verification model,
e.g. hybrid automaton

Purpose: Concept validation, re-
quirements elicitation, formal
verification

Development model, e.g.
close-loop simulation model

Purpose: Refinement validation,
simulation-based testing

Realized system, e.g. embedded
code with physical system

Purpose: Implementation valida-
tion, target platform execution,
integration testing

Model to model conformance

Model to implementation conformance

Detailed physical
model, software con-
cretization

Target platform tim-
ing, constrained data
types

Figure 2: Different models are needed in the development process for verification and validation.

discussing the definitions and properties of conformance relations, we provide references to

algorithmic approaches to check conformance and we outline the main application areas.

As such, the survey is intended for researchers, but written in a way that concepts can

also be understood by practitioners. In particular, we target researchers, who are familiar

with hybrid systems (e.g. modelling), but not with notions of conformance. The scope of

the survey does not include stochastic models or stochastic conformance relations, both for

reasons of length and the fact that conformance of stochastic models typically involves different

arguments.

We first introduce the formal basis for conformance and review conformance for discrete

systems in Section 2.2. In section 2.3, we discuss differences between discrete systems and

hybrid systems with respect to conformance. Then, we give an overview of conformance rela-

tions and review work on conformance in the domain of cyber-physical systems in Section 2.4.

We identify and study differences between several relevant conformance notions and give some

guidance on how to select the right conformance relation for a given use case in Section 2.5.

Finally, we discuss important aspects of input selection approaches for conformance testing in

Section 2.6 and conclude in Section 2.7.

2.2 Preliminaries

At the beginning of the development process, we want to model software and physical systems

by a simple model, e.g., hybrid automata as a modelling formalism, on which properties can

be verified. Subsequently, the developed software is refined using simulation tools and later for

implementation, e.g., on an electronic control unit. In every step, implementation aspects such

as scheduling of computations, quantization of variables, and sensor/actuator inaccuracies are

added as shown in Figure 2.

We consider inputs(S) as the set of piecewise continuous input functions of system S. For

modelling evolutions of the system, we follow Dang [41]. We define a state of a hybrid system

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

8 of 78

2 CONFORMANCE TESTING SURVEY

as a tuple (q, x), which combines the discrete location q and the continuous state x ∈ Rn. A

state trace x of the system is the sequence

x = (q0, x0)(q1, x1) . . .

with discrete states qi and continuous functions xi mapping time intervals [ti, ti+1] with

ti ≤ ti+1 to continuous states. As observable, we consider output states, which are projections

of states via the output map out. An output trace τ is the mapping of the state trace x onto

the observable output space via the map out:

∀i ∀t ∈ [ti, ti+1) : τ(t) = out(qi, xi(t)).

The set of all possible state traces of a system S under a given input function u(.) is denoted by

straces(S, u(.)). The set of all possible output traces of a system S under a given input function

u(.) is denoted by otraces(S, u(.)). Note that non-determinism in continuous dynamics can

be modelled using non-deterministic inputs and using non-deterministic differential equations.

Without loss of generality, we assume that non-determinism is not modelled with non-

deterministic inputs, but with differential inclusions [120]. In the hybrid systems community,

Zeno1 behavior is often assumed to be absent from the model, or, if this is not possible, Zeno

runs are not considered valid traces. Since Zeno behavior is a concept that cannot be observed

in the physical system, it is also often of little use in the models. We assume in this report

that all traces are non-Zeno.

Contrary to a (white box) abstract model with formalized differential equations, a (black

box) implementation typically can only be measured via its input/output behaviour. Our

concern is whether two systems on different abstraction levels in Figure 2 conform in a

way that properties of one system also hold in the other one. A formal definition of the

notion of conformance removes ambiguity and enables us to prove transference of properties.

Conformance should be defined as permissive as possible to relate many systems, yet as strong

as necessary to transfer the properties of interest.

Inspired by Tretmans [131], this can be formalized in the following way: We are given a

specification spec and two systems, an abstract system SA and an implementation system

SI . A specification spec is a property the system should have and describes a set of correct

(input to) output behaviours. A system SA is correct with respect to spec, which we write as

SA |= spec, if the output behaviour of SA is a subset of the correct output behaviour of spec

(for the same inputs). A useful conformance relation conf between systems SI and SA implies

1Infinitely many discrete transitions in finite time.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

9 of 78

2 CONFORMANCE TESTING SURVEY

Conformance
Falsification

Conformance
Verification

System SA
Behaviour

of SA
=

Behaviour
of SA

⊆ Specified
behaviour

contradicts
conf

proves conf
=

System SI
Sampled

Beh. of SI
⊆ Behaviour

of SI
⊆ Specified

behaviour

Figure 3: Conformance Overview

transference for related systems, which is that all specified properties transfer from SA to SI

SI confSA ∧ SA |= spec =⇒ SI |= spec .

There exist different names for conformance relations, such as implementation relation [26]

and refinement relation [18]. If a conformance relation holds, SA is called an abstraction of SI

and SI is called a refinement of SA [26]. For a conformance relation, it is important what type

of properties are transfered. For the class of properties which are transfered, the conformance

relation can also be called a property-preserving relation [29].

The presented formal definition of conformance enables sound reasoning: We can prove

that systems are conformant (conformance verification) or we can find a counter-example

(trace) which shows conformance cannot hold (conformance falsification). For conformance

verification shown in Figure 3, we have to prove that all behaviours of the two systems

are conformant. This is typically only possible for well-defined white box models or for

measurements with further assumptions on the system behaviour, because otherwise we

cannot prove that we have checked every possible behaviour. On the other hand, conformance

falsification only needs sampled behaviour of SI which does not have a corresponding equivalent

in the abstract model, to prove that conformance does not hold, see Figure 3. If we use

additional measurements to check conformance and do not find a counter-example, this

increases the confidence that the considered systems are conformant, but does not provide

a formal proof. Although it is incomplete, conformance is tested in practice with finitely

many tests, which are selected to obtain a high confidence that most (relevant) behaviour has

been checked. Such a conformance testing approach should effectively check conformance on

already available development artefacts, e.g. abstract models built early in the development

process. It should select inputs to the systems such that it fails fast, exposes relevant behavior,

and stops based on an interpretable test-end criterion.

In this paper, we consider different classes of properties. A safety property requires traces

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

10 of 78

2 CONFORMANCE TESTING SURVEY

to satisfy a propositional formula at every point in time. An example is freedom of collisions

of an autonomous vehicle, which demands no intersection with the occupancy of other traffic

participants. Furthermore, the class of linear-time properties specify desired discrete traces of

a discrete system [26, Section 3.2.3]. With Linear Temporal Logic (LTL) [26, Section 5], a

set of desired traces can be specified. This is done by combining propositional formulas on

states with temporal operators, such as always and eventually. Computational Tree Logic

(CTL) [26] specifies desired computational trees of a discrete system using path quantifiers.

LTL and CTL do not include each other, a discussion of the differences can be found in [26,

Section 6.1]. For timed systems, there are timed versions of LTL and CTL, called timed LTL

(TLTL) and timed CTL (TCTL) [26, 111, Section 9.2], which add clock constraints to the

propositions on the discrete state. Metric Temporal Logic (MTL) is similar to TLTL, but

defined on Boolean traces over continous time [15]. Furthermore, MTL has been extended to

Signal Temporal Logic (STL) [89], which maps propositions on continuous states to Boolean

traces and thus, can be used to define temporal properties for hybrid systems.

2.3 Principles of Discrete and Timed Conformance, and Concerns of CPS

The main idea of conformance relations are that the inner structure and state of the system

is not relevant, as long as the behaviour on the output is similar. Conformance relations

for discrete and timed systems are typically used as a foundation for conformance of hybrid

systems. Therefore, we give a brief overview of discrete and timed conformance relations.

Then, we discuss challenges wrt. hybrid systems.

Discrete systems can be modelled as transition systems, which produce a sequence of

discrete events. Trace inclusion between two discrete systems SI and SA holds, if all traces

of SI are also traces of SA. Trace inclusion transfers LTL properties for systems without

terminal states [26, Theorem 3.15]. Another relation is simulation: “Roughly speaking, a

transition system TS′ can simulate transition system TS if every step of TS can be matched

by one (or more) steps in TS′. Bisimulation equivalence denotes the possibility of mutual,

stepwise simulation.” [26, Section 7.1]. A detailed study of bisimulation was conducted by

Roggenbach and Majster-Cederbaum [117], and for probabilistic bisimulation by Abate [3].

One application of simulation and bisimulation is to abstract a system to a bisimilar quotient

system for verification purposes [26, Section 7.1.1]. While bisimulation transfers CTL [26,

Section 7.2], simulation transfers only a fragment of CTL [26, Section 7.5]. Simulation implies

trace inclusion, if there are no terminal states [26, Theorem 7.70]. Bisimulation implies trace

equivalence [26, Theorem 7.6]. A detailed comparison of bisimulation, simulation and trace

equivalence can be found in [26, Section 7.4.2]. These three discrete conformance relations have

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

11 of 78

2 CONFORMANCE TESTING SURVEY

one thing in common: They do not distinguish between input and output events. When the

input-output distinction is considered, there are additional concerns: input-enabledness/input-

receptiveness and quiescence. Input-enabledness holds for a system, if all possible inputs can

be applied in every state. For non-input-receptive systems, the system may declare inputs

as illegal, based on the state of the system [109]. Quiescence was used by Tretmans for the

input-output conformance relation (ioco) [132]. This is basically a synthetic output, which

captures the fact that there is no output of the system. Ioco assumes input-enabledness and

can be seen as the counterpart of trace conformance for systems with input-output distinction.

Two systems are ioco, if the possible outputs of one system are also possible outputs of

the other system after the same sequence of events. On the other hand, there are other

relations for input-output system, which do not assume input-enabledness, such as refinement

calculus [25]. Although most of the conformance relations in this paragraph are built for

discrete systems, they can also be applied to infinite transition system. In principal, timed

and hybrid system, formulated as infinite transition systems, can use the same conformance

relations. However, the meaning of conformance depends heavily on the definition of these

transition systems and typically does not capture the specifics of timed and hybrid systems.

Therefore, additional conformance relations were proposed, which are based on the discrete

conformance relations.

Timed systems extend discrete systems with time and passing time can be considered as an

additional real-valued event. The continuous time enables the measurement of time between

two events. This has led to timed simulation [130], as well as approximate timed simulation [67],

which allows a bounded deviation between the times at which the events happen on both

systems. Furthermore, time can be considered as an output, which reduces the need for

notions such as quiescence. This was done by tioco, a timed version of ioco [81]. A detailed

discussion on timed conformance relations can be found in Schmaltz and Tretmans [119].

Hybrid systems are a superclass of both discrete and timed systems. Hence, important

points of discrete and timed systems do also arise for hybrid systems. The traces of hybrid

systems can be abstracted to timed or discrete sequences and timed or discrete conformance

relations can be applied to it. With this approach some information of the systems is lost

in the abstraction. In this survey, we focus on hybrid systems, which are input-enabled and

where the hybrid part plays an important part, meaning that discrete or timed conformance

relations cannot be used for conformance considerations.

As opposed to discrete and timed systems, the states and the output of the physical part

of a hybrid system is real-valued. A richer set of traces (real values over continuous time)

are possible, compared to discrete sequences of discrete outputs. In particular, such a CPS

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

12 of 78

2 CONFORMANCE TESTING SURVEY

model is expected to react to inputs in dense time, producing a dense-time output. A system

model that does not define the reaction to a legitimate input at all times will typically be

seen as defective. Blocking input events might be possible, but due to the required continuous

evolution of the system, these can be assumed to be modelled as implicit self-transitions of a

location or transitions to an error location.

Discrete systems can be non-deterministic in the current location and in the set of possible

transitions. Hybrid systems can have this discrete non-determinism and additionally non-

determinism on the continuous evolution. This can be modelled by replacing differential

equations with differential inclusions leading to uncountably many traces of the system,

compared to countably many for discrete systems.

For discrete systems, structural coverage (e.g., visiting all states or code coverage) can be

used as a measure of testing progress. There are methods to construct a set of test inputs, which

are sufficient to prove that the system under test is conformant, as long as the number of finite

states can be bounded [38]. Hybrid systems have an uncountably infinite number of states with

respect to which coverage must be defined. Therefore, any meaningful coverage metric requires

(finite or countable) abstractions of the state space. At this point, discrete coverage measures

can be used again. This comes with the additional cost that one has to define an appropriate

abstraction. Since the state space is continuous, the computation of a coverage measure may

include geometric operations and can be computationally demanding [41]. Metrics of the

continuous state space can be used to define a coverage measure, however the choice of metric

and its implications are non-trivial.

With the basics of discrete and timed conformance relations and the characteristics of

hybrid systems in mind, we now give an overview of hybrid conformance relations.

2.4 Conformance Relations

In this section, we give an overview of existing conformance relations and their test procedures

based on the introduction in Section 2.2. We classify conformance relations as presented in

Figure 4: Simulation [124] is a conformance relation that relates states; Trace conformance [41]

only relates output traces and not states; Reachset conformance [116] abstracts the set of

traces and only checks these abstractions; Approximate simulation [55] and approximate trace

conformance [57] are approximate versions of simulation and trace conformance, where the

states and output trace respectively only have to be approximately similar. Each class

of conformance relations is reviewed and explained in detail in a separate subsection. We

structure each subsection into three parts: (i) definition, (ii) properties and transference, and

(iii) conformance verification and falsification. After presenting the different conformance

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

13 of 78

2 CONFORMANCE TESTING SURVEY

simulation

trace conformance

reachset con-
formance

approximate
simulation

approximate
trace conf.

without state dependency

without single trace dependency

approximate

approximate

w
ea

k
er

/
p

er
m

is
si

ve

Figure 4: Conformance relations overview.

relations, we compare them in Section 2.5.

While simulation and trace conformance are hybrid adaptions of discrete conformance

relations, the other relations do not have an exact discrete counterpart. Generally, hybrid

systems could be transformed to transition systems or abstracted to discrete systems on

which traditional conformance relations can be applied. For instance, in some cases discrete

abstractions of hybrid systems can be used for model checking [19, 124, 34] and control [80,

46, 124]. One abstraction-based conformance relation is qualitative reasoning input output

conformance (qrioco) [10, 32]. Qualitative reasoning models are used, which abstract from

concrete system behavior and states by providing a qualitative description of (i) system

dynamics based on qualitative differential equations, where only the direction of change of a

state is described, and (ii) so-called qualitative states, i. e., discrete equivalence classes over

the continuous states. Two systems SI , SA are qualitative-reasoning-input-output-conformant,

if the equivalence classes of the states and the derivatives are the same for the system traces.

Brandl et al. [31] propose the critera domain coverage, delta coverage, complete delta coverage,

state coverage, and transition coverage on the QR model for test generation. Note that such

abstractions are coarse, because only the conformance of discrete abstractions is shown.

2.4.1 Trace conformance relations

The conformance relations in this section can be seen as adaptions for hybrid systems of trace

inclusion for discrete systems. Dang [42, 41], as well as van Osch [135, 136], have defined

similar conformance notions for hybrid systems, which are inspired by Tretmans input-output

conformance (ioco) for discrete transition systems [131].

Definition For system SI to be trace conformant to system SA, which we write as

SI confT SA, the output traces of one system have to be included in the set of traces of

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

14 of 78

2 CONFORMANCE TESTING SURVEY

time

state

traces

Figure 5: The gray output traces contain only one of the black output traces. The other output
trace has a variable slope, the gray ones do not have, and thus the black output traces are not trace
conformant to the gray traces.

the other system:

SI confT SA ⇔ ∀u ∈ input(SA) : otraces(SI , u) ⊆ otraces(SA, u)

⇔ ∀u ∀TI ∈ otraces(SI , u) ∃TA ∈ otraces(SA, u) ∀t : TI(t) = TA(t).
(1)

Following Dang [41], we call this relation trace conformance, and an example is visualized in

Figure 5. Note that system SA defines the relevant input set. Therefore, system SI only has

to conform to SA for the inputs of SA and there is no restriction for other inputs. This is the

reason why the trace conformance relation is only transitive if the input sets are equal.

While Dang defines trace conformance for hybrid automata and on traces, van Osch follows

Tretmans more closely and uses hybrid labelled transition systems as the system modelling

formalism by defining the relation based on transitions and not based on traces. Van Osch calls

the conformance relation hybrid input-output conformance (hioco). There exist several other

names for basically the same notion of conformance for different formalism. Alur et al. [16]

define language inclusion for hierarchical hybrid systems, Henzinger et al. [68, 17] refinements

for hierarchical hybrid systems. Lynch et al. [85] introduce implementation relation for hybrid

input output automata, whereas Tabuada [124] uses the name behavioral inclusion. Another

name for trace conformance – inspired from discrete conformance relations – is weak simulation.

Grasse [63] presents trajectory propagation and trajectory lifting. Ikeda et al. [73, 39] present

the inclusion principle – which is basically trace conformance – for linear systems in the

context of decentralized control. Mitsch et al. [92] discuss projective relational refinement

for refactoring and refining hybrid systems given in differential dynamic logic. Following

Quesel [110], we call the systems trace equivalent if trace conformance holds in both directions.

Alur et al. [19] call it language equivalence, whereas Pola et al. [105] use the name input-output

equivalence.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

15 of 78

2 CONFORMANCE TESTING SURVEY

Properties and transference Since the output traces of SI are also output traces of SA

if SI is trace conformant to SA, properties which hold on all output traces of SA also hold on

all output traces of SI . For instance, if an ouput is not reachable for system SA, then it is

also not reachable for system SI . Alur et al. [19] show that trace equivalence transfers linear

temporal logic (LTL) properties, but not computational tree logic (CTL) properties. The

same should also hold for trace conformant systems, but we found no proof in the literature.

Conformance verification and falsification For deterministic systems and a given input

trace conformance can simply be tested by checking if both output traces are equal. For

checking the inclusion of a trace of SI in a non-deterministic system SA, one has to find the

non-deterministic choice for SA that produces the same output trace. Van Osch [135, 136]

approaches this problem by computing a tree where the edges are labeled with inputs or

outputs and leaves are labelled with pass or fail. Paths starting at the root of the tree represent

traces of the system. Finite time evolutions of the continous parts are included as elements of

the discrete test tree. A test execution traverses the tree and finally leads to a pass or fail

on the leaf. The main problem with this algorithm is that it is not clear how to generate a

memory-limited tree for a given hybrid system (there are infinitely many traces), which checks

conformance and covers all behaviours. Structural information from the hybrid systems is not

leveraged, but naively transformed into hybrid labeled transition systems and test trees.

Dang [42, 41] proposes a practical approach for checking trace conformance of deterministic

systems with a coverage-guided test generation implemented in the test generation tool

HTG2 [41, 43]. Given a hybrid system model SA which should be checked against a black

box implementation SI , the algorithm generates a trace tree approximately covering the state

space of the model SA. This is done using a discrepancy measure that recognizes regions

which are not covered very well. Iteratively, these regions are explored and approximately

covered using rapidly exploring random trees. The disparity of the sampled state space is

used as a test-end criterion. The result is a test tree which can be used to select the input for

the implementation under test and to compare the resulting outputs.

Another approach is used by Mitsch et al. [91] to synthesize a conformance monitor from a

model given in differential dynamic logic. It does a sampling based check of trace conformance

for measured data against the model.

2https://sites.google.com/site/htgtestgenerationtool/home

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

16 of 78

2 CONFORMANCE TESTING SURVEY

ετ

T1(.)

T2(.)

Figure 6: The output trace T2(.) is similar to output trace T1(.), but with a time delay τ . The output
distance of T1(t) and T2(t) is greater than ε for some time t.

2.4.2 Approximate trace conformance relations

A small difference of output traces of two deterministic systems SI , SA is sufficient to invalidate

trace conformance. However, SI and SA can be approximately conformant if their traces

remain close to each other. We can use a metric d to quantify the distance of the traces so

that ε-approximate trace conformance can be defined as

I conf≈ S ⇔ ∀u ∈ inputs(S) ∀TI ∈ otraces(I, u) ∃TS ∈ otraces(S, u) : d(TI , TS) ≤ ε.

If one uses the metric d(TI , TS) = supt do(TI(t), TS(t)) with a metric do on the output

space, one obtains the approximate language inclusion as defined by Girard and Pappas [57].

However, they only used it for comparison to approximate simulation – contrary to Bian and

Abate [30] who focused on approximate trace conformance in a probabilistic context. A very

special approximate trace conformance relation focusing on heartbeats is presented by Banach

et al. [27].

We want to emphasize that transference in the sense of Section 2.2 does not hold for

approximate trace conformance relations. Instead, system SA has to satisfy a robust version

[spec]≈-robust of the specification to verify spec holds on SI :

SI conf≈ SA ∧ SA |= [spec]≈-robust ⇒ SI |= spec

Most of the following relations focus on systems with continuous output only, which is

motivated by control systems that control a continuous physical quantity and where systems

are typically modelled deterministically. An output deviation for deterministic systems can

be inadequate for systems whose outputs are time-shifted (delayed) as for the jump-response

pattern in Figure 6. The following approximate relations focus on such systems and allow

output deviation and time deviation. Especially in the case of non-continuous jumps of

the signals, retiming plays an important role. For an easier presentation, we use retiming

functions [110], which simply scale time (not necessarily continuously).

(τ, ε)-closeness relation Abbas et al. [5] present a conformance relation called (τ, ε)-

closeness focusing on deterministic models with continuous outputs. They consider a bounded

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

17 of 78

2 CONFORMANCE TESTING SURVEY

signal

real time
va

lu
e

retiming

scaled time

re
a
l

ti
m

e

retimed signal

scaled time

va
lu

e

τ

Figure 7: A retiming function transforms a signal.

output deviation ε and additionally a bounded time deviation τ as visualized in Figure 7.

The time deviation bound τ can be represented by a retiming function r as

max
t
|r(t)− t| ≤ τ.

Hence, two output traces T1 and T2 are (τ, ε)-close if there exists a τ -bounded retiming r≤τ

with

∀t : d(T1(t), T2(r(t))) ≤ ε (2)

and another retiming where (2) also holds, but with interchanged roles of T1 and T2. For two

points in time t1 and t2, the corresponding points in scaled time r(t1) and r(t2) potentially

have different order: t1 < t2 but r(t1) > r(t2) and thus there could be a local time disorder,

which complicates the transference of temporal properties.

Based on the notion of closeness of output traces, Abbas et al. [5] define (τ, ε)-closeness

for two deterministic systems SI and SA as

SI conf(τ,ε)−close SA ⇔ ∀u ∈ inputs(SA) ∃r≤τ : sup
t
d(TI(t), TA(r≤τ (t)) ≤ ε,

where TI and TA are the (single) output traces for the given input and initial state. Note

that Abbas et al. [5] define (τ, ε)-closeness for sampled output traces with a finite horizon

and hence, their definition is directly applicable to numerically simulated output traces and

measured ones. Dependent on the application, a slightly different version of (τ, ε)-closeness

defined on hybrid time [5] can be used, which requests that the number of discrete state jumps

is the same for both output traces. Mohaqeqi and Mousavi [93] extended (τ, ε)-closeness to

also incorporate discrete actions. Additionally, Mohaqeqi et al. [95] study the differences of

(τ, ε)-closeness and hioco.

Due to the possible local time disorder, temporal properties can be transfered with some

restrictions only. For instance, the property ”globally between time 1 and time 3, the velocity

is greater than 10” proves only ”globally between 1+τ and 3-τ , the velocity is greater than

10-ε” for (τ, ε)-close systems. Abbas et al. [6] prove the transference of such transformed

properties in Metric Temporal Logic. The connection of (τ, ε)-closeness to (τ, ε)-approximate

simulation is studied by Abbas et al. [4].

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

18 of 78

2 CONFORMANCE TESTING SURVEY

To determine the (τ, ε)-closeness between systems, Abbas et al. [4] present an optimization-

based approach. They formulate a robustness value that measures the degree of (τ, ε)-closeness.

An optimization algorithm, such as simulated annealing, Monte-Carlo techniques [100], or

ant colonies optimization [20], can be used to generate inputs minimizing the robustness

value. They also present an approach to compute a minimal under-approximation of ε for

a given τ and linear switched systems using rapidly exploring random trees (RRTs). These

optimization-based approaches are applicable in the sense that their only assumption is that

both systems are deterministic and input-enabled. Since such methods usually use sampled

traces, Mohaqeqi and Mousavi [94] give error bounds under which sampling of the system does

not corrupt the checking of (τ, ε)-closeness against measured data, which is also discussed by

Araujo et al. [24]. Aerts et al. [7] present a tool which tests a model versus an implementation

on (τ, ε)-closeness. Test-generation is covered with the focus on valid input generation (sound

and robust test cases). (τ, ε)-closeness [28] was used to check a DC-DC converter.

ε-δ-similarity Quesel [110] introduces ε-δ-similarity, which is (τ, ε)-closeness with ε = δ

and a preserved time order. Therefore, the retiming r has to satisfy t1 < t2 ⇔ r(t1) < r(t2).

Several transference theorems are proved for this relation: Region stability, MTL fragment with

transference between SI and SA in both directions. Quesel does conformance checking using

KeYmaera [103] and quantifier elimination. Due to the complexity of quantifier elimination,

the approach seems to be limited to simple models.

ε-Skorokhod conformance Deshmukh et al. [45] define the ε-Skorokhod conformance

relation, which is identical to ε-δ-similarity with δ = ε. Since time deviations and output

deviations are both bounded by ε, ε-Skorokhod conformance depends heavily on the relative

scale of output and time. Contrary to ε-δ-similarity, different conformance bounds can be

compared more easily, because it is one dimensional. Dhesmukh et al. prove transference

of timed LTL with predicates and freeze quantifier (subsuming STL) with ε-Skorokhod

conformance. The authors have implemented a stochastic search-based approach maximizes

the Skorokhod distance of the output traces. Since time and output bounds are intertwined,

one cannot simply loop over the output traces and compute their distance. Therefore,

Deshmukh et al. present a sliding-window-based monitor to check ε-Skorokhod conformance

for a given error bound ε. Majumdar and Prabhu [87, 88] present a computational method for

quantifying the Skorokhod distance between two hybrid sampled output traces. Skorokhod

conformance was used to check an air-fuel ratio controller [45].

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

19 of 78

2 CONFORMANCE TESTING SURVEY

2.4.3 (Bi-)simulation relations

The notion of simulation and bisimulation originated from studying discrete structures in

theoretical computer science [117]. Tabuada [124] and Frehse [49] give a detailed introduction

to simulation relations for hybrid systems. In contrast to trace conformance, simulation

relations relate system states rather than outputs. The underlying system formalisms of

simulation relations are transition systems.

Definition Continuous and hybrid systems can be formalized as transition systems as done

for hybrid (i/o) automata [85, 124] as well as for discrete-time linear systems [128]. A system

SI is simulated by system SA if there exists a relation R between the state space of SI and

SA such that for all related states (sI , sA) ∈ R and all state traces xI of SI starting at sI ,

there exists a state trace xA of SA starting at sA such that

∀t : (xI(t), xA(t)) ∈ R and out(xI(t)) = out(xA(t)) (3)

holds. Note that the classical definition of simulation relation on hybrid automata does not

consider inputs. However, by forcing that the evolution xA and xI have the same input u(.),

this can be incorporated. Cuijpers [40] and Prabhakar et al. [106, 107, 108] define stronger

relations called continuous simulation and uniformly continuous (input-output) simulation,

which require the relation between states to be (uniformly) continuous.

If the simulation relation holds in both directions simultaneously, the systems are called

bisimilar. Bisimulation relations have been used for linear systems [102, 134], for non-linear

systems [125], for switching linear systems [105], and for hybrid systems [124, 133, 33]. The

theory of bisimulations for dynamical and hybrid systems were unified by Haghverdi et al. [65]

using categorical approaches.

Properties and transference One of the benefits of relating states of systems is the

transference of CTL properties for bisimilar systems, as shown by Alur et al. [19]. Tabuada

et al. [126, 127] show that similarity and bisimilarity of subsystems can be used to construct

simulations and bisimulations of the complete system. A discussion of the transference of

controllability via simulation relations for linear and nonlinear systems is presented by Ho

and Grasse [72, 64]. However, the classical notion of simulation does not transfer stability

properties [40]. Stability transference requires a continuous simulation [40], whereas asymptotic

stability and input-ouput stability requires uniformly continuous simulation and uniformly

continuous input-output simulation, respectively. Rüffer [118] presents a conformance type

using comparison systems which similarly transfers stability properties.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

20 of 78

2 CONFORMANCE TESTING SURVEY

Conformance verification and falsification Most computational approaches focus on

checking simulation between two models and not between a model and an implementation.

For instance, the tool PHAVer [50] can be used to check simulation as detailed by Frehse

et al. [52, 49]. This is due to the reason that simulation relates system states, which are typically

not possible to be obtained from measurements. For linear systems, there exist methods to

compute bisimulation relations between given models using a fixed-point characterization [102,

134]. Tanner and Pappas [129] present necessary und sufficient conditions for a simulation

relation between two constrained linear systems. They are able to check simulation relations

using a number of linear programming problems. Munteanu and Grasse [96] present a

method to compute simulation relations between nonlinear control systems affine in inputs

and disturbances. Murthy et al. [98, 99] present the framework BFComp, which computes

bisimulation functions using sum-of-squares optimization, δ-decidability over the reals, and

counterexample guided search. Yang [139] generalize the scalar-valued simulation functions to

vector-valued simulation functions.

2.4.4 Approximate simulation relations

For systems where the continuous dynamics are the main concern, the exact notions of

simulation relations can be too restrictive. This led to the generalization of simulation to

approximate simulation, used for instance in system biology [97]. The approximate notion

does not restrict the outputs of both systems to be the same, but only to remain close enough.

By using an ε bound of ε = 0, approximate simulation becomes simulation. The approximate

nature is used to related a model or implementation to a simpler model which does not model

every detail and thus has some deviation in the outputs. Hence, one has to change properties

on transference as discussed for approximate trace conformance relations.

Definition Approximate simulation is defined on metric transition systems which are

transition systems combined with a metric d on the output space. The formal definition [55] is

as follows: System SI is ε-approximately simulated by system SA if there exists a relation R

between the state space of SI and SA such that for all related states (sI , sA) ∈ R and all state

traces xI(.) of SI starting at sI , there exists a state trace xA(.) of SA starting at sA so that

∀t : (xI(t), xA(t)) ∈ R and d(out(xI(t)), out(xA(t))) ≤ ε (4)

holds. One of the main contributors towards approximate simulation has been Girard [54] and

co-authors. They defined approximate simulation for continuous systems [57], as well as for

hybrid systems [55, 56]. Other researchers built on top of this work and presented approximate

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

21 of 78

2 CONFORMANCE TESTING SURVEY

simulations for linear systems in descriptive form [121], for hybrid communicating sequential

processes [138], as well as approximate simulation and approximate refinement for metric

hybrid input output automata [101]. Tabuada [123] defines (ε, δ)-approximate simulation

motivated by stability properties. The relation (ε, δ)-approximate simulation is basically the

same as ε-approximate simulation, but with the additional requirement that all states sI , sA

with d(out(sI), out(sA)) < δ are related by the state relation (sI , sA) ∈ R.

The symmetric relation – both systems approximately simulate each other – is called

approximate bisimulation. If it holds, the system’s output traces are at most ε away of being

equivalent. Approximate bisimulations have been defined for constrained linear systems [58, 60],

for nonlinear dynamical systems [59], and for hybrid systems [55, 56].

Approximate simulation accepts a deviation on the output measured separately at each

point in time. However, approximate simulation is potentially not enough for systems whose

outputs are time-shifted (delayed), e.g. a jump-response pattern. For systems where time

deviation has to be taken into account, Julius et al. [75] introduce the notion of (ε, δ)-

approximate (stochastic) simulation which accepts an output deviation of ε and a time

deviation of δ.

Stochastic models and relation are not within the scope of this survey. However, we

want to shortly mention that there are also definitions of approximate simulation for linear

stochastic systems [76] and hybrid stochastic systems [74, 77]. Abate [3] has conducted a

survey on approximate metrics for stochastic processes.

Properties and transference If system SI is approximately simulated by SA, for every

reachable state of SI there is a reachable state of SA with an output difference of the states

of at most ε. Unfortunately, we found no theory of transference for approximate simulation

besides this reachability transference. However, approximate trace conformance follows from

approximate simulation [55, 56] and therefore all transference theorems can be reused. Since

approximate simulation is a stronger relation than approximate trace conformance, one could

possibly prove even more by combining proofs from simulation transference and approximate

trace conformance transference.

To characterize approximate (bi-)simulation of SI by SA, Girard et al. introduce simulation

functions [55, 57] and bisimulation functions [59, 57], respectively. These functions are inspired

by Lyapunov functions which can be used to prove system stability. Bisimulation functions

give bounds on the deviation of outputs for a given state pair of both systems and have to be

non-increasing. If one can compute a simulation function, this leads to a proof of approximate

simulation. The ε-simulation functions generalize simulation functions for (ε, δ)-approximate

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

22 of 78

2 CONFORMANCE TESTING SURVEY

simulation [75].

Conformance verification and falsification Several techniques to compute simulation

functions have been developed. The first one reformulates the simulation function search as a

linear matrix inequality (LMI) problem [58, 60, 77, 86]. The solution of the LMI generates

a simulation function. Unfortunately, these methods are restricted to linear systems only.

For nonlinear systems, bisimulation functions can be computed by solving a sum-of-squares

(SOS) problem [59]. The main advantage of both formulations is that standard solvers for

LMI and SOS can be used. However, the scalability of the methods also depends on the

numerical robustness and scalability of these tools. The main disadvantage is that these

methods do not give a counterexample if they are not able generate a simulation function.

Therefore, an interactive approach is not possible and one gains no insight in the system if

no simulation function is generated. Yan et al. [138] have proposed a method to compute

simulation functions for hybrid communicating sequential processes. If simulation functions of

subsystems are available, these can be used to construct a simulation function of the overall

system [53]. There are also methods to construct approximate simulating models for a given

model [62, 104] and for control purposes [61].

2.4.5 Reachset conformance relation

So far, we have presented conformance relations that relate traces in an exact or approximate

fashion. The following relation do something else: It compares abstractions of the set of

output traces referred to as otraces(S, u).

Roehm et al. [116] introduce a conformance relation called reachset conformance. It

intends to transfer verification results obtained via reachability analysis. Reachability analysis

tools compute (an overapproximation of) the set of reachable states – also called reachsets –

of a model S for points in time t and inputs u (see Figure 8):

Reacht(S, u) = {T (t) | T ∈ otraces(S, u)}.

Reachable sets make it possible to verify if a set of forbidden states can be reached. This is

especially useful for non-deterministic systems, where small deviations of the system behaviour

from the ideal behaviour without uncertainty should also be safe.

Definition Formally, the reachset conformance between SI and SA is

SI confR SA ⇔ ∀t : ∀u ∈ inputs : Reacht(SI , u) ⊆ Reacht(SA, u).

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

23 of 78

2 CONFORMANCE TESTING SURVEY

time

state

traces
time

state

reach sequence

Figure 8: The reach sequence of a set of traces as published by Roehm et al. [116].

Formulated on output traces, the reachset conformance relation can also be defined as

∀u : ∀TI ∈ otraces(SI , u) : ∀t : ∃TA ∈ otraces(SA, u) : TI(t) = TA(t). (5)

We call the weaker version abstracting time weak reachset conformance:

SI confWR SA ⇔ ∀u ∈ inputs :
⋃
t

Reacht(SI , u) ⊆
⋃
t

Reacht(SA, u).

Loos et al. [84] introduce differential refinement logic dRL, which syntactically extends

differential dynamic logic with a refinement operator on hybrid systems. If the conformance

relation is not mixed with the system models, dRL is identical to weak reachset conformance.

However, since mixing of the refinement operator with differential dynamical logic is possible,

other conformance relations could also be constructed. Wang et al. [137] define approximate

reachability equivalence, where the reachable sets only have to be approximately equal.

Properties and transference Reachset conformance and weak reachset conformance both

transfer non-reachability: A state not reachable for SA is also not reachable for SI [116].

Although the reachset conformance relation is focused on transfering safety properties from

an abstract model (verified with reachability analysis) to an implementation, it also transfers

temporal properties that can be formulated in Reachset Temporal Logic [115].

Conformance verification and falsification For two systems SI and SA amenable to

reachability analysis, reachsets can be computed and checked for reachset conformance. If

reachability analysis is not applicable, rapidly exploring random trees (RRT) can be used for

black-box models [14], as well as measured data from real systems [116], to underapproximate

the reachable sets. Hence, output traces can be seen as sampled elements of the reachsets

and used for conformance falsification as visualized in Figure 3. In this case, we have to test

the inclusion of the output trace in the reachsets for all points in time which can be done in

parallel.

To guide the reachset conformance testing, Roehm et al. [116] introduce a coverage

measure based on reachability. It uses the reachsets of the model SA to select a small input

set which approximately covers the reachable space of SA. The approach can be seen as the

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

24 of 78

2 CONFORMANCE TESTING SURVEY

reachability-based version of the coverage measure of Dang [41]. Reachset conformance has

already been used to check conformance of a model of walking humans [83].

2.5 Comparison

In the last section, we have reviewed available conformance relations. In this section, we relate

the different conformance notions as summarized in Figure 3. We show how to select the right

conformance relation with respect to the application context and give some guiding examples

to better explain the relations.

2.5.1 Choice of conformance relation

It is not always clear which relation should be used for a given model or for a given scenario.

Therefore, we provide some guidance on how to select the right conformance relation. The

important properties are summarized in Table 1.

If one wants to formally verify that conformance holds between two systems SI and SA,

one should use (bi-)simulation or approximate simulation. The reason is that there are no

methods to formally prove other conformance relations directly (from simulation follows trace

conformance and reachset conformance). Keep in mind that for a formal proof the systems

SI and SA are required to be white box models (e.g. differential equations have to be known).

In general, simulation should be prefered over approximate simulation, when possible, unless

both systems deviate from each other to some extent. In that case, approximate simulation

can be used to relate the systems. If computational tree logic (CTL) properties are of interest

instead of linear-time properties, bisimulation has to be used in place of simulation. Note

that formal conformance verification takes a considerable effort and thus is restricted to small

system models on relatively high abstraction levels only.

When formal conformance verification cannot be used, one has to resort to conformance

testing. For (non-temporal) safety properties, reachset conformance should be used. In this

case, while trace conformance or simulation could also be used, they are stricter than is needed

to transfer properties of interest, possibly making it more difficult to achieve conformant

models. Keep in mind that the published reachset conformance testing method requires the

system SA to be a white box model and amenable to reachability analysis tools, such as

Cora [12], SpaceEx [51], and Flow* [35].

If the property to be shown is a more general MTL or TLTL property, trace conformance

can be used to relate both systems. In the case when output deviations between both systems

are possible, approximate trace conformance is the first choice, because it transfers temporal

properties. However, one has to consider approximate conformance relations do not transfer

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

25 of 78

2 CONFORMANCE TESTING SURVEY

Table 1: Properties, which guide the conformance relation selection process.

Conformance
Relation

System SI System SA
Conformance
Checking Focus

Bisimulation white box white box Formal Verifica-
tion

Simulation white box white box Formal Verifica-
tion

Approximate Simulation white box white box Formal Verifica-
tion

Trace Conformance black box black box Testing
Approximate Trace Confor-
mance

black box black box Testing

Reachset Conformance black box white box Testing

Conformance
Relation

Transference of

Bisimulation safety, TCTL, TLTL, MTL, STL
Simulation safety, TCTL (partially), TLTL, MTL,

STL
Approximate Simulation similar to simulation2

Trace Conformance safety, TLTL, MTL, STL
Approximate Trace Confor-
mance

similar to trace conformance2

Reachset Conformance safety, RTL

the exact temporal property, but a slightly changed one [6]. The approach can also be used

for black-box models and systems with only their inputs and outputs being accessible.

2.5.2 Simulation vs. Trace Conformance vs. Reachset Conformance

Simulation and trace conformance are equivalent for deterministic systems (with a single

initial state), as discussed by many authors [57, 124, 134, 85, 105]. In addition, reachset

conformance and trace conformance are also equivalent for deterministic systems [116]. In

the case of non-deterministic systems, distinguishing these relations is relevant: simulation

implies trace conformance [124] and trace conformance implies reachset conformance [116].

Note that by comparing the definitions of reachset conformance in (5) and trace conformance

in (1), the only difference is the different ordering of the quantifiers ∀t and ∃TA.

We illustrate the difference between the relations on three non-deterministic models given

in Figure 9 with two continuous state dimensions x and y, the continuous output x, and

without inputs.

• The model M1 has two output traces: a sine and a cosine function for initial state x = 0

and y = 1.

• The model M2 selects at time π/2 to which function, sine or cosine, it switches after

2Property has to be transformed upon transference due to the approximate conformance relation.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

26 of 78

2 CONFORMANCE TESTING SURVEY

time π has passed.

• The model M3 can switch between a sine and a cosine function after time π has passed.

We interpret any discrete state transition as urgent, so that a transition must be taken after

every half period represented by the transition label x = 0 [90]. The relations between these

three models are illustrated in Figure 10. For reachset conformance or trace conformance, one

simply has to check the inclusion of the reachsets or the set of output traces in one another.

Since M3 is not trace conformant to M1, M3 is not simulated by M1. M1 is simulated by

M2 with the state relation R which simply relates identical states: (s1, s2) ∈ R, if s1 = s2.

Although M2 and M3 have the same set of output traces, M3 is not simulated by M2. If the

required state relation R between M3 and M2 exists, then a state of M2 corresponds to the

discrete state down with continuous state x = 0, y = 1 of model M3. This state of M2 does

not exist because the states of M2 can either evolve only up or only down for the following

half period and a given state, which ist not the case for M3.

Note that the main source of non-determinism in the example above comes from the

discrete transitions. Therefore, the example would also work if the models would be abstracted

to discrete models by removing the differential equations. Van der Schaft [134] provides an

example about the difference between simulation and trace conformance. Roehm et al. [116]

do the same for reachset conformance and trace conformance. In these example, the source

of non-determinism is the continuous side and this shows that the differences between the

relations do also persist if the source of non-determinism does not come from the discrete side.

2.5.3 Approximate language inclusion vs. (τ, ε)-closeness vs. Skorokhod confor-
mance

The relations approximate language inclusion, (τ, ε)-closeness, and Skorokhod conformance

are approximate trace conformance relations and each uses a metric to compute the distance

between two output traces. The metric defines which output traces are considered as close.

This immediately raises the question of the differences between these relations. To solve this,

we discuss the differences by an example. In the following, we consider a deterministic system

S, choose one output trace T (.), and characterize the different sets of output traces which are

close to T (.). For ease of presentation, we will assume that T is one-dimensional.

Approximate language inclusion requires ε-close output traces to vary at most ε for all

times. Therefore, all output traces which are ε-close to T (.) can be represented by tubes which

have the same representation as reachset sequences (and are intervals for one-dimensional

spaces)

R1(t) := [T (t)− ε, T (t) + ε]

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

27 of 78

2 CONFORMANCE TESTING SURVEY

Model M1 Model M2 Model M3

h
y
b

ri
d

a
u

to
m

at
o
n

down

ẋ = y
ẏ = −x

up

ẋ = −y
ẏ = x

x = 0

x = 0

down &
next up
ẋ = y
ẏ = −x

up &
next up
ẋ = −y
ẏ = x

down &
next down
ẋ = y
ẏ = −x

up &
next down
ẋ = −y
ẏ = x

x = 0

x = 0x = 0

x = 0

x = 0

x = 0

x = 0

x = 0

down

ẋ = y
ẏ = −x

up

ẋ = −y
ẏ = x

x = 0

x = 0

x = 0

x = 0

tr
ac

es

o
u
tp

u
t

time ,

o
u
tp

u
t

time

time , time ,

time , time

time , time ,

time , time

re
a
ch

o
u
tp

u
t

time

o
u
tp

u
t

time

o
u
tp

u
t

time

Figure 9: Three example models and their reachsets and output traces.

col reachset conf. to row
M1 M2 M3

M1 yes yes yes
M2 yes yes yes
M3 yes yes yes

col trace conf. to row
M1 M2 M3

M1 yes no no
M2 yes yes yes
M3 yes yes yes

col simulated by row
M1 M2 M3

M1 yes no no
M2 yes yes no
M3 yes yes yes

Figure 10: Comparison of conformance for different models.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

28 of 78

2 CONFORMANCE TESTING SURVEY

time

state

reference trace T (.)

ε-close region

(τ, ε)-close region
ε

τ T1(.)

T2(.)

tt′

Figure 11: Visualization of reachsets, which represent reference-trace-close traces for approximate
language inclusion and (τ, ε)-closeness, as well as two sample traces.

and for an output trace T ′ the check simplifies to checking T ′(t) ∈ R1(t) for all times t.

Similarly, (τ, ε)-close traces can be represented by

R2(t) :=
⋃

t′∈[t−τ,t+τ]

[T (t′)− ε, T (t′) + ε],

which includes R1(t) and therefore is less restrictive. Conformance relations, where the output

traces are ε-close to T (.) can be represented by a reachset, have one important advantage: For

every point in time, we only have to check inclusion, which can be done in parallel, because

T ′(t1) ∈ R1(t1) and T ′(t2) ∈ R1(t2) are uncorrelated for different times t1, t2.

Skorokhod conformance and ε−δ-similarity are relations without the possibility to represent

output traces which are ε-close to T (.) as reach sequences. The main reason, which prevents

the representation, is a requirement on the time domain: Different points in time t, t′ are

required to have the same temporal ordering after retiming. As an example, consider the two

output traces T1, T2 visualized in Figure 11: Although both output traces share the same

value at t, this point in time is the very reason why T2 – as opposed to T1 – is not ε-Skorokhod

close to the reference trace. The time t has to be retimed to a time r(t) < t for T2, because

the distance between T2(t) and T (t) is more than ε. However, the same applies to t′ and one

would need to change the temporal occurrence (r(t′) > r(t), but t′ < t) which is not allowed

for these relations. Therefore, we have to consider the whole time domain at once for checking

conformance. For τ > ε we have that

ε-close traces to T (.) ⊂ ε-Skorokhod close traces to T (.) ⊂ (τ, ε)-close traces to T (.).

2.5.4 Approximate trace relations vs. approximate simulation

For the approximate versions of trace conformance and simulation, the differences are similar

as for the exact versions. Girard et al. [59, 55, 56] prove that approximate trace conformance

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

29 of 78

2 CONFORMANCE TESTING SURVEY

follows from approximate simulation. By setting the parameters of approximate relations

to zero (ε = 0), one obtains the exact relations. For instance, with τ = 0 and ε = 0, the

(τ, ε)-conformance is equivalent to hioco [5].

Our short comparison of the conformance relations neglects the fact that the relations

are defined on different modelling formalisms in the respective papers. For a mathematically

rigorous comparison of two conformance relations conf1, conf2, one has to use a transformation

T to transform conf1 and its modelling formalism to conf2:

SI conf1 SA ⇔ T (SI) conf2 T (SA)

for two systems SI , SA. Khakpour and Mousavi [79] do this for hybrid input-output confor-

mance, (τ, ε)-conformance, and approximate bisimulation and their underlying formalisms:

Hybrid labeled transition systems (HLTS), hybrid-timed state sequence systems (HSS), and

metric transition systems (MTS). They define a transformation from HLTS to MTS and

prove that hioco is equivalent to the exact simulation relation for input-enabled and determin-

istic models. Furthermore, they prove that (τ, ε)-conformance is equivalent to approximate

simulation relation for their defined transformation from HSS to MTS.

2.6 Input Selection for Conformance Testing

Lee [82] has defined conformance testing as the process of testing a white-box model against a

black-box refinement. In this section, we focus on how to select relevant inputs from the large

number of possible inputs. We follow Lee and assume that we want to check SI confSA with

a black-box refinement SI and a white-box abstract system SA. The goal of input selection

for conformance testing is to generate inputs leading to non-conformant behaviour or to give

a high confidence that we have tested conformance sufficiently, e.g., using a test-end criterion.

Inputs should be selected such that we find non-conformant behaviour fast (falsification) and

that we expose relevant behavior (coverage) with a minimal number of tests. It must be said

that the topic of input selection for conformance of CPS is still very much under research at

this point, and not really as mature as for discrete systems. Therefore, in the remainder we

give only a brief overview of existing work (cf. [8]).

Coverage A notion of coverage can support the input selection towards diversification of

input selection. For systems with a continuous input and state space, a coverage measure

can only be approximative and heuristic. For instance, when sampling the input space, it is

not a priori known, which are the interesting regions. Covering the input space is not a good

coverage criterion, because a good coverage of the input space may not lead to a good coverage

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

30 of 78

2 CONFORMANCE TESTING SURVEY

of the state space. A possible approach is to approximatively cover the reachable state space

of SA with a finite number of tests [48, 47, 78, 22]. This ensures that the inputs are selected

such that sufficiently different behaviours of the system are shown. Brandl et al. [31] measure

coverage based on the coverage of a discrete abstraction of the continuous state space, called

qualitative reasoning models.

If the reachable state space cannot be estimated accurately, we can still try to find inputs

that identify novel behavior and increase the diversity of the reached states. Dang [41, 44]

uses a measure to quantify diversity and to automatically select a state space area which is

not sufficiently explored. This approach converges to a full reachable state space coverage of

SA [41]. Rapidly-exploring random trees are used to find input exploring the selected area and

are also used for exploring the reachable set of non-deterministic systems. Roehm et al. [116]

introduce a coverage measure which uses reachable sets instead of RRTs to approximate the

reachable state space. Another possibility for generating inputs covering relevant behaviour is

the use of mutant-based methods [9, 11, 114].

Covering the reachable state space of SA can be seen as the continuous counterpart of

statement coverage, e.g., [21, 23]. It makes the implicit assumption that all paths to a given

state are equivalent with respect to testing. Since we always compare two systems, the

prefered coverage would be a coverage of the Cartesian product of the state spaces of both

systems. However, the refinement is typically black-box or its complexity is too high and thus,

a coverage of the Cartesian product of the state spaces of the systems is not possible.

Optimization-based falsification Besides using coverage for input generation, incremen-

tal optimization of inputs can be used, as visualized in Figure 12. The difference of the

outputs for identical inputs is captured by a heuristic and fed back for selecting the next input.

In the literature, this approach has been used for falsifying temporal properties [100, 20]

and has been transfered to work for falsifying the conformance relations (τ − ε)-closeness [5]

and ε-Skorokhod conformance [45]. Since both are approximate conformance relations, they

already carry an implicit notion of distance between traces. Optimization guides the input

selection to maximize the distance between the trace of both systems and thus, to find

non-conformant behaviour. If a metric is available, this approach can be used for all other

present notions of conformance as well. For reachset conformance for instance, the distance of

the reach sequence of SI to the boundary of the enclosing reach sequence of SA could be used.

This helps to guide falsification towards inputs where the inclusion does not hold.

Besides finding the least conformant behaviour, relevant behaviour should be exposed.

This can be achieved by combining coverage-based input selection with optimization-based

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

31 of 78

2 CONFORMANCE TESTING SURVEY

input selection system

heuristic

input

outputindicator

Figure 12: Generic incremental input selection approach.

input selection. The abstract system SA can be used to approximatively cover its state space

and a coverage heuristic can be used to express the confidence that different type of behaviour

was exposed.

Since we can only run a finite amount of test cases, we need a test-end criterion at which

point we are confident to stop conformance testing. In general, this requires assumptions on

the systems under test and hence, this is application specific. Any coverage measure can be

used to define a test-end criterion; however, this can lead to test-end criteria, where the test

end cannot be interpreted very well or lead to undesired properties of the test-end criterion

(cf. [41, Section 1.10]). Dang uses disparity of consecutive tests as a termination criterion [41].

2.7 Conclusion

This survey presents conformance relations for cyber-physical systems. We identify five basic

classes of conformance relations: (1) trace conformance relations, (2) approximate trace

conformance relations, (3) simulation relations, (4) approximate simulation relations, and (5)

reachset conformance relations. We present their definitions, what properties transfer with

conformance, and what conformance verification and conformance testing methods exist. We

also provide some guidance for the selection of a suitable conformance relation for a given

application context, contrasting the characteristics of the different conformance relations from

the literature.

While a number of conformance relations have been proposed in the literature, there has

not been much research focus on test generation methods for showing these. Open questions

include test coverage criteria, guarantees relative to assumptions on system behavior and test

input generation algorithms. We believe that, from an industrial standpoint, the applicability

of the theoretical conformance relations hinges on providing tailored means to transport these

results into practice by systematic testing.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

32 of 78

3 CONFORMANCE TESTING IN THE DEVELOPMENT PROCESS

3 Conformance Testing in the Development Process

In this section, we look at conformance testing as used within the UnCoVerCPS approach,

and discuss how it relates to the development process from an automotive perspective. In

particular, we focus on the notions of trace conformance as described in Section 2.4.1 and

reachset conformance as described in Section 2.4.5, and on input generation via optimization-

based falsification as described in Section 2.6.

3.1 Non-deterministic Models

A key characteristic of the models used in the UnCoVerCPS context (and hybrid systems

verification in general) is that they are typically not deterministic, but contain set-based non-

determinism. This means that the simulation of a model is replaced by set-based computations,

giving rise to the technique of reachability analysis. This is in contrast to the models that

are used in typical development processes today. Classically, models for simulation or control

are deterministic, i.e., will produce one single state/output trajectory for a fixed input signal

and initial state. When two deterministic models or one model and a set of traces need to

be related to each other, this can for instance be done with the help of metrics in the signal

space (i.e., the Frechet distance). However, this leads to a notion of similarity (by bounding

the measure with some number) that gives no or very conservative guarantees for verification.

Hybrid systems verification approaches instead allows one to model of the notion of distance

as non-determinism in the model. Whether a signal is conformant to a model is captured by

an inclusion relation: all traces which can be produced by a model are conformant to it. This

can be used to capture simple pointwise signal distances, as well as more intricate notions of

an admissible distance. In other words, since different kinds of uncertainty can be added in

different places of a hybrid system model (additive or multiplicative set-based disturbances in

differential equations, non-deterministic guards or updates on the transitions, non-determinism

between invariants and outgoing guards), we can also model complex notions of conformance

directly as an hybrid automaton. In particular, instead of simply adding a disturbance to

the observed continuous state, it is possible to define disturbances on inputs and discrete

structure of the models. This notion of non-determinism is not common in state-of-the-art

modeling in the industry and also has implications for the testing task. Therefore, fitting

conformance into the development process largely has to do with integrating the aspect of

explicit non-determinism in the models.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

33 of 78

3 CONFORMANCE TESTING IN THE DEVELOPMENT PROCESS

3.2 Conformance Checking

The nature of conformance checking problems depends on the conformance relation that is

used. In the survey in Section 2, different types relations are discussed in detail. In this section,

we will therefore restrict ourselves to trace conformance, which requires that all observed

traces are also traces of the non-deterministic model. For the purpose of conformance checking,

the non-deterministic model becomes a new type of specification that has to be fulfilled by the

real system. This specification can either be tested offline with recorded measurement data

or cast into an online monitor that is active at runtime. In both cases, one has to deal with

the fact that trace inclusion is undecidable for hybrid automata in general (in fact already

for timed automata [66]). However, in our experience, non-deterministic models for physical

processes can often be framed in a form where trace inclusion becomes not only decidable,

but simple to check. For instance, see the models for the automated driving (AD) use case in

Section 5, where a trace conformance check basically amounts to inclusion checks in intervals.

For the online case, state-of-the-art model-based diagnosis functions in industry typically

use deterministic models to compute residuals between computed and measured values of

physical quantities. These residuals are then compared to a threshold, and if it is violated,

there is no conformance, which can for example indicate a defect in some physical component.

Online monitoring of non-deterministic models requires online checks for trace inclusion

instead, which for our AD use case model is simple, but may be more complex depending on

the sources of non-determinism in the model.

From a development process standpoint, offline conformance checking can therefore be

seen as a test against a (complex) specification, while online conformance checking amounts to

model-based diagnosis with a (complex) model. Both of these activities have direct equivalents

in the classical development process.

3.3 Input Generation and Test End Criteria

Since offline conformance checking is essentially testing against a complex specification, this

means that classical testing methods can be used for test generation and design of experiments.

For example this includes methods for search-based testing/falsification [5], which are already

being used in an industrial context. In a nutshell, these methods use optimization algorithms

and some measure of specification fulfillment/violation or coverage to generate interesting test

cases. Traditionally, the measure is either a handcrafted metric (for example time-to-collision

type metrics for automated driving) or based on real-valued semantics of some temporal logic

(i.e., STL/MTL [89, 15]). In the case of conformance testing, one only requires a conformance

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

34 of 78

3 CONFORMANCE TESTING IN THE DEVELOPMENT PROCESS

metric quantifying how robustly a measured trace is included in the model or how far it is

outside. In Section 4 we define such a metric, which is then applied to the automated driving

use case in Section 5. If the model has more than one discrete state (which is not true in our

case), then additionally, test generation methods for state machines, e.g., based on transition

coverage can be used.

As far as test end criteria and coverage arguments are concerned, a purely discrete code

coverage is not sufficient, but some notion of coverage of the continuous space is needed. In

Section 4 we also give a possible approach for that problem. However, the decision when a

model can be deemed sufficiently covered by test is one that requires political and societal

discussions as well as statistical arguments, resulting in some kind of norm or standard, which

is outside the scope of the project.

In summary, other than requiring a quantitative conformance checking procedure yielding

a conformance metric, the conformance testing problem can be framed as a spefication-based

testing problem, so that infrastructure as well as processes do not require large changes.

3.4 Identification of Conformant Models

The problem of finding a ”minimal” conformant model can be cast into the following form:

Given a deterministic model (e.g., based on an ordinary differential equations), enlarge model

uncertainties enough, so that it is conformant to all measurements. In general, this is a

multi-objective optimization problem where the goal is to find Pareto-optimal solutions.

For this to work, the model must be given in some parameterized form to find how much

uncertainties have to be enlarged.We essentially solve a parameter identification problem of

higher dimensionality (i.e., with more parameters) compared to classical system identification,

since we additionally require uncertainty bounds. In return, we have a hard yes/no decision on

whether a set of parameters is adequate, as opposed to the soft cost functions that are typically

used for deterministic models in industrial practice. This set-based parameter identification

problem can either be done based on measured data (conformance checking) or together with

test generation/design of experiments (conformance testing). In Deliverable 5.2, as well as in

Section 4 of this deliverable, we describe such an approach and apply it to the automated

driving use case (see Section 5 of this deliverable).

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

35 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

Table 2: UnCoVerCPS based development vs. classical model-based development

UnCoVerCPS based development Classical model-based development

conformance checking
checking bounds on distance measures be-
tween traces

offline conformance testing specification-based testing

online conformance monitoring model-based diagnosis

test case generation/design of experiments
for conformance testing

test case generation/design of experiments
for specification based testing

identification of conformant models parameter identification

3.5 Summary

In summary, from a development process standpoint, conformance testing and the notion of

non-deterministic verification models latch on to existing development processes. There is an

increase in complexity, because:

• models now have extra parameters modeling the uncertainty,

• computational steps on the model have to be set-based (also including online computa-

tions),

• simulation has to be replaced by reachability analysis,

but the advantage is that uncertainties are made explicit in the model and fuzzy notions of

similarity are replaced by strict conformance notions. On a high level, the connections to

existing process steps are summarized in Table 2.

4 Conformance Testing Methods in UnCoVerCPS

This section describes the conformance testing approaches that have been developed within

UnCoVerCPS. First, we present a novel algorithm to identify non-deterministic reachset

conformant models from measurement data. While work in this direction has already been

performed in deliverable D5.2 [1], the methods presented in D5.2 left room for improvements:

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

36 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

we were only able to identify two conformant Taylor models for two specific maneuvers and

the reachable sets of the reachset conformant models were very conservative. Section 4.1

describes the improvements to the methods used in D5.2. Secondly, we give an approach for

the automated generation of conformance tests based on Bayesian optimization in Section

4.2. Based on the Gaussian surrogate models generated through Bayesian optimization, we

then describe an approach to quantify test coverage. We applied all these approaches to the

automated driving use case, which will be described in detail in Section 5.

4.1 New Algorithm to Identify Reachset Conformant Models

This section presents a constructive algorithm that allowed us to (i) find conformant Taylor

models for each of the four maneuvers recorded for the DLR vehicle [1] (one Taylor model

per maneuver), (ii) to find a generalized Taylor model that is conformant to all recorded

measurement data and (iii) to ensure that the models are not too conservative and therefore

likely to be of practical use. The application to the automated driving use case will be

described in Section 5. Our approach assumes that the models to be identified are ordinary

differential equations (ODEs). Even though this approach was developed for the automated

driving use case, it is general and can also be applied to different systems. Note that the work

presented in the following is currently revisited for resubmission as a journal paper.

Let a (non-conformant) model M be given. This model can for instance be a deterministic

model, which approximates the behaviour of a system S. The model can be transformed

to a parametric one M((e1, . . . , el)), where the vector e = (e1, . . . , el) models deviations to

the exact model behaviour of M . For instance, on the differential equation ẋ = f(x, u) the

deviation ex can be added as an additive term: ẋ = f(x, u) + ex. Other deviations, such as

multiplicative errors or non-determinism on update functions of hybrid automaton transitions,

can be considered as well. As the deviation is not known exactly, we use a set E to represent

all possible deviations e ∈ E, and we use the notation M(E) for this non-deterministic model.

For the algorithm, we limit ourselves to sets E which are represented by zonotopes.

We start with E = {0}, which is equivalent to assuming there is no deviation, and increase

E until reachset conformance holds, as shown in Algorithm 1. The inputs for Algorithm 1

are the model M with initial set IM , as well as measurements of the system S for an input

u(.). We compute the reachable sets of M(E) and check for reachset conformance against the

measurements of S. The check is done with the same reachset conformance testing methods

presented in deliverable D5.2 [1]. If we find a counter-example ce, we can compute the direction

dce ∈ Rn of the excluded point from the center of the associated reachable set. The direction

dce can be used to increase E by adding a new generator g to the zonotope. The addition of

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

37 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

Algorithm 1 Algorithm to identify non-determism to achieve a reachset conformant model

Input: Abstract model M , initial set IM , set of measurements M for input u(.), tuning
factor λ

Output: E for which M(E) is reachset conformant
1: Initialize E as zonotope z(0)
2: Compute reachable sets Reacht(M(E), u(.), IM) for all times t in a given time interval T
3: For all times t ∈ T search for counter-example ce with Reacht(M(E), u(.), IM) and M
4: if Counter-example ce exists then
5: Compute new normalized generator g with hgenerator(ce)
6: Enlarge E by adding λ · g as a generator
7: Jump back to 2
8: else
9: return E

10: end if

a generator in the direction of the deviation results in an enlarged zonotope in that direction,

which can be used to compute a new zonotope that also includes the counter-example.

The function indicating which generator g to add, depending on the direction dce of

counter-example ce, is called hgenerator(ce) here. The function hgenerator(ce) is implemented

as a heuristic. One specific heuristic is as follows. We assume that non-determinism is

represented by additive terms ei ∈ E for selected differential equation of a deterministic

model. Then, the function hgenerator(ce) computes a new generator g based on the share of

each dimension in the normalized direction dce of counter-example ce from the center of the

reachable set. This means that we increase the non-determinism of the differential equation

of the dimensions which contribute to the non-conformant behaviour.

Additionally, the new generator g = hgenerator(ce) is scaled with a constant λ, which

defines the step length of the algorithm. With this parameter, it can be tuned how much the

non-determinism is adapted in each iteration. After E is updated, we start again by computing

the reachable sets of the new M(E). This iterative process terminates if no counter-example

is found anymore, and it is guaranteed to terminate for each measurment. Then, M(E) is

reachset conformant with respect to the measurements of S and we return E.

As a result, we are able to automatically increase the non-determinism of an ODE model

until it is reachset conformant to a given set of measurements of the system S. In the next

section we look at the problem of automated test generation, i.e., the problem of deciding

which measurements should be taken to increase the confidence in the conformance of a model

to the real system.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

38 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

4.2 Automated Conformance Test Case Generation

As mentioned earlier in Section 3.3, offline conformance testing is essentially specification-based

testing/design of experiments with a specification that is a non-deterministic model. Since

in the end we are interested in testing conformance of a model against the real physical

system, black box testing methods become necessary as the real system is by definition not

a model anymore. Here, search-based testing/falsification approaches [20, 100] have shown

great potential in specification-based black box testing which also have been adopted in

industry. Regarding conformance testing, search-based testing has also been used in previous

work [5, 45] wrt. (τ − ε)-closeness and ε-Skorokhod conformance. The work presented in

the following differs from related work regarding the conformance relation: we investigate

the reachset conformance relation which guarantees the transference of safety properties,

and is more permissive wrt. conformance. Furthermore, we propose and evaluate Bayesian

optimization as a global optimization technique, driving the test generation for conformance

testing.

4.2.1 Search-based Conformance Testing

Search-based testing approaches leverage quantitative metrics on the inputs and outputs

of black box systems, which are connected to system specifications, for automatic test

case generation by employing optimization algorithms. In contrast to Boolean test results,

indicating whether a test case passed or failed, quantitative metrics reflect the degree of

passing/failing of the system under test. In case of a passed test, this feedback allows us to

estimate how robustly a test passed. The robustness value r for test cases allows us to (i)

understand the quality of test cases, and (ii) generate or select better test cases, i.e., with a

higher probability to detect a fault in the implementation. This is possible because such a

quantitative robustness measure allows the use of continuous-valued optimization techniques.

By convention, the robustness is defined such that negative values for robustness imply

failed test cases. Thus, given a function I(p) mapping parameters to input signals, global

optimization methods can be used for finding input parameters p ∈ Rn that result in a

negative robustness (r < 0). These methods are typically use in conjunction with temporal

logic specifications on the system level.

In order to leverage search-based testing for conformance testing wrt. a chosen conformance

relation, a quantitative conformance robustness metric r is necessary. Roughly speaking, this

means that for a given parametrized input I(p), this metric quantifies how robustly a behavior

of the reference system MR is included in the model M . In order to find the parameters p∗

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

39 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

of an input I(p∗) that falsify conformance between the model M and the reference system

MR, global optimization methods are used in search-based conformance testing to solve the

problem of finding the global minimum of robustness

p∗ = arg min
p

r(M, I(p),MR). (6)

If this minimum is found positive, the model is proven to be conformant. If any test case is

found where r(M, I(p),MR) < 0, this implies that r(M, I(p∗),MR) < 0 and thus the model

is not conformant. Since it is not possible in general to show that a global optimum has

been found, this necessitates the use of heuristics for determining when to stop testing. An

approach for such a heuristic is described in Section 4.3. In the following section we present

a conformance robustness metric r that can be used for search-based reachset conformance

testing.

4.2.2 Conformance Robustness Metric for Reachset Conformance Testing

As mentioned above, the conformance robustness metric r has to quantify the robustness

of conformance between model M and reference system MR. In previous work within the

UnCoVerCPS project we developed different algorithms that were used in reachset conformance

checking against measured data in the automated driving use case [116, 1]. However, these

algorithms only check if a reference point is included within the reachable set of the model

without robustness quantification.

Thus, we need a measure how robustly a reference point is included within a reachable

set. Figuratively speaking, reference points close to the borders of the reachable set are less

robustly included than reference points near center of a reachable set. Then, given a sequence

of reachable sets and a sequence of reference points (i.e., a measured signal) we take the

minimum over the robustnesses values over all sequence elements. The resulting number will

be positive if the signal is included in the reach sequence and negative otherwise.

To compute the robustness for a single reference point and a reachable set, we first compute

the distance to the closest boundary of the reachable set and then normalize the result with

respect to the size of the zonotope. Without normalization, small reachable sets would yield

much lower robustness values, and dominate the result for sequences, since we take the

minimum. In the following we mathematically define the robustness metric.

In the reachability analysis tool CORA, a reachable set R is represented as a sequence of

n-dimensional zonotopes Z in generator representation (G-representation):

Z = z(c, g1, . . . , gm) :=

{
c+

m∑
i=1

λigi | λi ∈ [−1, 1]

}
, (7)

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

40 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

where c ∈ Rn is the center and g1, . . . , gm ∈ Rn are the generators of Z. Since zonotope

inclusion checks, i.e., checking if a reference point is included in a zonotope, do not scale

[116] to higher numbers of generators, we overapproximate the zonotope with a polytope P

in halfspace representation consisting of less halfspaces than the zonotope. A n-dimensional

polytope P in halfspace representation (H-representation) is defined as

P = p(H, k) := { x ∈ Rn | H · x ≤ k }, (8)

with H ∈ Rm×n, k ∈ Rm and is also called a m-polytope. Furthermore, let Hj · x ≤ kj be the

representation of the j-th hyperplane of m-polytope P with j ≤ m, i.e., Hj is j-th row of

matrix H. Without loss of generality, we assume that Hj is normalized, i.e., |Hj | = 1.

Let c be the center of the zonotope Z that is overapproximated by P . Then the distance

djc of c from the hyperplane Hj of P is djc = Hj · c − kj . Similarly, the distance dxref of a

reference point xref from the j-th hyperplane is djxref = Hj · xref − kj .

Given a reference point xref and a m-polytope overapproximation P , we compute the

reachset conformance robustness metric r by

r = min
j≤m

djxref

djc
. (9)

Here, the distance of the center of the zonotope to the hyperplane is used to normalize r.

In order to generalize equation (9) to sequences of reference points and reachable sets, we

compute r(I(p)) with the associated reference trace xref (t) by

r(I(p)) = min
ti

min
j≤m

djxref (ti)

djc(ti)
. (10)

The resulting value of r(I(p)) is the associated robustness metric for the input signal I(p).

4.2.3 Bayesian Optimization for Test Generation

An optimization method that is well suited for test generation is Bayesian optimization. The

reason for this is the fact that test runs using complex models are usually costly enough to

warrant the overhead of the Gaussian regression [112] that is used in this optimization method.

This is especially true for reachset conformance testing, since each test requires not only a

measurement on the real system or high-fidelity simulation, but also a reachability analysis for

the abstract model. Furthermore, the explicit surrogate model of the system that is generated

by the Bayesian optimization algorithm can be leveraged for test coverage arguments, as will

be described in Section 4.3.

In a nutshell, the idea of using Bayesian optimization for conformance testing is as follows.

We assume that a parameterized input trace generator, the reference system (e.g. a high

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

41 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

fidelity simulation model), the abstract model, the reachability algorithm and the conformance

metric are all subsumed in a single mathematical function r(p). Given a number of previous

test results (i.e., parameter values pi and the associated robustness values r(pi)), Bayesian

optimization builds a Gaussian process regression model of the function r [112]. Since the

model is a Gaussian process, it can be used to derive predictions of r(p) for parameter values

p that have not been tested yet. More precisely, the predictions rpred(p) are one-dimensional

Gaussian curves for each p, i.e., for the probability that r(p) is precisely r we have:

P (r|p) =
1

σp
√

2π
e−1/2((r−µp)/σp)

2
, (11)

where the predicted mean µp and the predicted variance σ2p are determined as part of the

regression. Note that the σ2p is an epistemic uncertainty, i.e., it represents the ”level of

knowledge” over that part of the input space and will decrease as test coverage increases.

Note that neither µp nor σ2p are given in analytical form. Instead, they must be computed for

each p separately. Using this prediction different so-called acquisition function can be used

to described how desirable a certain p is as a new sample of the optimization loop (in our

case, as a next test). Classical acquisition functions are obtained by maximizing expected

improvement, probability of improvement, etc., on the Gaussian regression. In our case, also

maximizing the probability of non-conformance is a useful option. This underlying second

optimization loop is done using another optimizer, which can run much faster, as instead of

running the full system under test, only the predictor function for the Gaussian process needs

to be called.

A main advantage of using Bayesian optimization is that the notion of exploring as of yet

untested areas of the input space is rather naturally combined with the notion of running

more tests in the more critical areas of the input space. This is caused by the fact that there

can be two reasons for a test to be prioritized by the acquisition functions: (1) the predicted

mean robustness is low, and (2) the predicted robustness variance is high, which naturally

occurs in untested parts of the state space. Depending on the optimizer setup, these two

testing goals can be placed in different trade-offs as needed.

In summary, a Bayesian optimizer for conformance test generation will, starting from a

number of initial samples (i.e., boundary cases of the test space): (1) build a Gaussian process

regression model given the available samples, (2) optimize an acquisition function over the

Gaussian process indicating how interesting a test would be based on the prediction, (3) run

this test and add it to the set of samples, and (4) return to (1) unless a test end criterion has

been triggered.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

42 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

4.3 Test Coverage as a Test End Criterion

In general, the question when to stop testing, i.e., when no parameter value p such that

r(I(p)) < 0 can be found, is difficult to answer. Obviously, testing cannot provide correctness

proofs in infinite test spaces, one has to rely on additional assumptions. For example, software

testing metrics such as code coverage or MC/DC [36] focus on covering the discrete decision

space of a program, with the implicit assumption that each sequence of discrete decisions

is sufficiently covered by a single test only. The same is true if transition coverage metrics

on automata are used: it is sufficient to trigger each transition once. For hybrid systems

in general and conformance testing in particular, this assumption no longer holds, as the

continuous dynamics might behave very differently in different parts of the state space. In

fact, the models used for the automated driving use case contain no switches at all, so using

traditional software testing metrics, they would require just a single test. As this is clearly

not sufficient, we will in the following give an approach for coverage in continuous spaces that

ties in well with the Bayesian scheme for test generation. Note that this is however just one

possibility to define such a metric: other approaches are certainly possible (see Section 2.6).

We propose to use Gaussian process regression not only for test generation, but also as a

quantitative approach of defining coverage. For each parameter value p, the value of

P (r|p) =
1

σp
√

2π
e−1/2((r−µp)/σp)

2
(12)

describes the probability that r(I(p)) = r according to the Gaussian process model. The basic

idea here is that the integral

P (r < 0|p) =

∫
r<0

P (r|p)dr (13)

describes the likelihood of still finding a failing test, according to the model. Note that this

probability depends both on the predicted mean and the predicted variance at p. Figure 13

visualizes (13) as yellow area. If we now compute the integral∫
p∈P

P (r < 0|p)dp (14)

it has the following interpretation: Given a uniformly distributed random selection of p ∈ P ,

what is the probability, according to the model that the test will fail? We propose that this

is an useful way of quantifying the residual risk that is still left after a number of tests. In

particular, for a robustly conformant model, this measure will converge to zero as the number

of tests go to infinity, as σ2p, will also tend toward zero.

There is however, one caveat with this method: the Gaussian regression for a set of tests

is not unique and in fact depends on a number of hyperparameters which (implicitly) encode

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

43 of 78

4 CONFORMANCE TESTING METHODS IN UNCOVERCPS

Figure 13: Illustration of the Gaussian process regression for a single parameter p: Blue circles denote
actual test cases. The red dashed line is the form of the expected value µp along with µp ± σp in
green. Furthermore, for one selected parameter, the figure illustrates the Gaussian distribution of the
probabilities of the potential robustness values for this parameter (see (12)). The yellow area is the
area that is captured by (13).

the assumptions on the system under test, and in particular on the generalizability of tests

into the surrounding areas of the input space. The Gaussian kernel parameters defining the

increase of σ2p with increasing distance from actual tests is of particular importance here. For

Bayesian optimization, these hyperparameters are often hidden from the user, and optimized

in another loop, yielding the best possible Gaussian process fitting the data (e.g. maximum

likelihood estimation). If the Gaussian process is to be used to quantify the quality of a test

set, these parameters must instead be visible and explicit. They must be set to reflect the

desired coverage on the state space. In fact, for the same set of tests, just by varying the

Gaussian kernel parameters, the integral can yield all values in the open interval between

0 and 1. Intuitively speaking, the Gaussian kernel is used is used to quantify with respect

to a single test, the probability with which new tests with a certain distance will have a

certain deviating value. Practically speaking, the Kernel parameters must be derived from

physical assumptions on the system which form the basis of the coverage argument. Possible

assumptions may be on Lipschitz constants, sensitivities, bounds on measurement or process

noise, etc. However, agreeing on a set of possible parameters is a matter of political and

societal agreements and, ultimately, standardization and therefore beyond the scope of this

project. However, it should always be noted that all conformance testing coverage metrics

obtained from this method are relative to these assumptions and results with different sets of

hyperparameters are in general not comparable.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

44 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

5 Application of Conformance Testing Methods to the Auto-
mated Driving Use Case

In this Section, we apply the conformance testing methods from Section 4 to the automated

driving (AD) use case. First, in Section 5.1, we describe how conformant models for several

maneuvers were identified for the DLR vehicle, using the approach from Section 4.1. Then,

in Section 5.2 we show the application of the test generation and coverage quantification

methods from Sections 4.2 and 4.3. We selected the automated driving use case to evaluate

our new methods as this use case has been explored regarding conformance issues in the most

depth and therefore is the best illustration of the application of these techniques.

5.1 Identification of Conformant models for the DLR vehicle

In this section, we give new results on the identification of conformant models for the DLR

vehicle, going beyong what was already presented in D5.2. In particular, using the method

described in Section 4.1, we were able to achieve models that have tighter reachable sets and

are therefore more useful within the UnCoVerCPS framework.

5.1.1 Summary of Measurement Setup for Physical DLR Vehicle

In order to have a self-contained version of this deliverable, we summarize the main information

on the experimental setup of how we obtained measurements from the DLR vehicle for

conformance testing from D5.2 [1].

The test vehicle (FASCar II) is a Volkswagen Passat TDI from 2009 (Figure 14), which is

equipped with a combined differential GPS receiver (DGPS) and inertial navigation system

(INS). Four different types of maneuvers with a velocity of vx = 10m/s and a maximum lateral

acceleration ay = 2m/s2 have been recorded at a rate of 100Hz. As visualized in Figure 15,

the four maneuvers are

1. Single lane-change maneuver: One single lane-change from a right lane to the left

lane, which is a typical maneuver for automated vehicles.

2. Double lane-change maneuver: After a single lane-change, the vehicle stays on the

left lane for a small amount of time and switches back to the initial lane. This is a

standard overtaking maneuver.

3. Fast double lane-change maneuver: This maneuver is similar to the double-lane

change maneuver, but immediately switches back to the right lane, when on the left

lane. Such a maneuver occurs when avoiding obstacles on the road and is more dynamic

than the double lane-change.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

45 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 14: The DLR test vehicle FASCar II.

4. Slalom maneuver: To challenge the model with measurements of a more dynamic

maneuver, we additionally include a slalom maneuver (see Figure 15(d)).

Each maneuver was repeated five times with the average duration of a maneuver being 14.16s.

Overall, the total driven distance of the dynamic maneuvers within our measurement data was

around 3km. All maneuvers used for conformance testing have been executed in automated

driving mode, i. e., closed-loop tracking of a predefined reference trajectory, which is sent from

a PC to a closed-loop tracking controller on a dSPACE Autobox.

5.1.2 Taylor Vehicle Model and Non-deterministic Error Structure

We model the test vehicle described in the section above using a bicycle model as in deliverable

D5.2 [1] which is based on the models by Althoff and Dolan [13, 14]. The advantage of the

bicycle model is that it sufficiently describes the vehicle dynamics while being simple enough

to be amenable to reachability analysis. Since verification might be done online with real time

constraints and to speed-up reachability analysis, we further tune the model to speed up the

reachability analysis computations.

The state space of our bicycle model is 6-dimensional and has the states x = (px, py, ψ, vx, vy, ω)T,

where px, py is the position of the vehicle’s rear axle center in an earth-fixed coordinate system,

ψ is the orientation of the vehicle. The speed of the vehicle’s rear axle center is given as

(vx, vy)
T in the vehicle coordinate system. The velocity components are the respective projec-

tions to the vehicle’s longitudinal and lateral axis. The vehicle’s yaw rate is given as ψ̇ = ω.

Regarding the differential equations, the interested reader is referred to [1]. Furthermore, the

inputs of the model are computed by a non-linear tracking controller which is described in

more detail in [70].

Since we are ultimately interested in the position and orientation of the vehicle, e.g., to

detect possible collisions, we use these components as the outputs. As described in Section 4.1,

we use the additive error parameters ex, ey, and eω on the derivatives of the states px, py and

ψ to inject the non-determinism into the model.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

46 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

60 80 100 120 140 160 180 200 220 240

−2

0

2

px [m]

p
y

[m
]

(a) Single lane-change maneuver

60 80 100 120 140 160 180 200 220 240

−2

0

2

px [m]

p
y

[m
]

(b) Double lane-change maneuver

60 80 100 120 140 160 180 200 220 240

−2

0

2

px [m]

p
y

[m
]

(c) Fast double lane-change maneuver

60 80 100 120 140 160 180 200 220 240

−2

0

2

px [m]

p
y

[m
]

(d) Slalom maneuver

Figure 15: The different maneuvers of the experimental setup.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

47 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

emx [m] emy [m] emψ [◦]

0.05 0.05 0.5

Table 3: Measurement errors used in reachset conformance testing

As mentioned above, in order use online reachability and to in order to be able to explore

the Pareto fronts of conformant models as mentioned in Section 3.4, computing reachable sets

has to be completed within reasonable time. This requires fast computations, potentially within

real-time constraints. Therefore, we build a Taylor model of the closed-loop bicycle model

which results in a simplification of the Lagrange remainder computations of the reachability

analysis. Building the Taylor models has already been explained in Deliverable D5.2 [1] and

is therefore omitted in the following. By using Taylor models of the order 2, we achieve a

performance gain in reachability analysis up to the factor of 1500.

Note that polynomial approximations of (Taylor) models bears a risk that some behavior

is contained in the original model but not in the approximations of the model. However, the

original bicycle model is also only a model, which is not the real vehicle. Using a Taylor model

does not break any formal arguments, because we are using them for both verification and

conformance. The main goal is to have a reachset conformant model and thus, we only have

to test that the final model, we are using, is reachset conformant to the measurements of the

real vehicle. In the end, we get a reachset conformant Taylor model and not a conformant

bicycle model. Note that our approach can also be combined with other advanced online

verification approach, for instance with motion primitives [69].

5.1.3 Experimental Results

With the recorded experimental data and the deterministic model of the vehicle, we have all

ingredients to build a reachset conformant model with Algorithm 1 from Section 4.1.

For each maneuver we have multiple measured experimental runs. We use the initial points

of all runs of the maneuver to build the initial set for the model. Since the measurements

contain some sensor errors, we use the bounding box of the initial points enlarged by the

sensor errors, presented in Table 3, as initial set IM of the model.

Regarding the inclusion of measurement points within reachable sets, we check the inclusion

of measured data in the reachable sets of the 3-dimensional output space (px, py, ψ)T. We use

the pairwise inclusion check as described in [116]. Regarding measurement errors, we assume

that each measured data point of the vehicle position and orientation may be inaccurate up

to the values depicted in Table 3.

First, we compute the required non-determinism Ei for each maneuver i independently

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

48 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

with Algorithm 1. The union of the sets Ei, which characterize the non-determinism of each

maneuver individually, leads to a model which is reachset conformant for all maneuvers and is

called aggregated model. Second, a model for all maneuvers is computed by using all maneuvers

combined in the Algorithm 1 and we call this model the collective model. In the following,

we discuss the results and compare the two approaches. Table 4 shows the non-determinism

needed such that: (i) all measurements of a single maneuver are reachset conformant to the

model and (ii) all measurements of all maneuvers are reachset conformant to the aggregated

model and the collective model, respectively.

Our first observation is that we have found reachset conformant models for all maneuvers.

All four maneuvers need approximately the same amount of non-determinism for ex. Compared

to the other maneuvers, the slalom model and the fast double lane-change model have more

non-determinism for ey, which seems to be reasonable as these two are the most dynamic

maneuvers. For some of the maneuvers, the measurement error on ψ is approximately the

same size as the absolute deviation of the measurements from the deterministic model. Since

we consider the measurement error, the whole deviation is explainable in the two maneuvers

with the non-determinism of the initial set. Furthermore, this case shows the relationship

between the error dimensions ey and eψ: Both errors lead to an increased interval width of py.

The fast double lane-change and the slalom maneuvers have non-determinism for both ey and

eψ, to explain the lateral deviation. The double lane-change has only eψ and therefore, this

non-determinism has to be bigger to account for the whole deviation in py.

The aggregated model combines these different non-determinism and thus is a robust but

conservative overapproximation. For the collective model, the non-determinism is computed

for all maneuvers together in one single run of Algorithm 1. As a result, the non-determinism

is slightly lower while still being conformant. Although the aggregated model has a bigger E

as the collective model, the amount of non-determinism has the same order of magnitude as

the non-determinism for the single maneuvers. This shows that the models are reasonable

and the results from single maneuvers generalize. Figure 16 shows the measurements for

the single lane-change maneuver. Additionally, the reachset of the conformant model is

visualized. Note that the controller has a small damped oscillation after changing the lane.

With reachset conformance, this can be easily handled compared to trace conformance, where

all the derivatives of the oscillation would have to be considered.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

49 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Table 4: Identified intervals for e∗ of non-determinism E for the different reachset conformant models.

Model ex in m/s ey in m/s eψ in rad/s

Double lane-change model [−0.1064, 0.1064] [−0.0004, 0.0004] [−0.0140, 0.0140]
Fast double lane-change model [−0.0990, 0.0990] [−0.0129, 0.0129] [−0.0127, 0.0127]
Single lane-change model [−0.1151, 0.1151] [0, 0] [−0.0117, 0.0117]
Slalom model [−0.1253, 0.1253] [−0.0113, 0.0113] [−0.0047, 0.0047]

Aggregated model [−0.1252, 0.1252] [−0.0129, 0.0129] [−0.0140, 0.0140]
Collective model [−0.1136, 0.1136] [−0.0129, 0.0129] [−0.0127, 0.0127]

To evaluate the applicability of our reachset conformant models for verification purposes,

we compute the reachable sets and use their sizes as a benchmark criterion. For real driving

scenarios we may only have a small uncertainty in the lateral position py. Big uncertainty,

such as over 0.5 meter, may lead to situations where we have to assume that our vehicle could

be already on an adjacent lane and a collision may be possible. The longitudinal position px

is less relevant, because one has to consider traffic rules and thus usually has a higher distance

to leading and following vehicles [113] than to adjacent lanes.

Table 5 shows the maximal interval widths of the dimensions of the reachable sets for

the models, which are reachset conformant for a single maneuver only, as well as for the

aggregated model and for the collective model. First of all, the results do not differ very much

between the maneuvers. All the models have an interval width in the longitudinal position

of at most 0.42m and in the lateral position of at most 0.36m. What we can see is that the

range for py is significantly increased when the aggregated model is considered, compared to

the collective model and even more to the single maneuver models. This reflects the previous

discussed fact that the identification of the non-determinism was done independently for each

maneuver, which can be an approach to build a more robust model with the disadvantage

of increased reachable sets. To get a better feel for the maximal interval widths, we use the

measurements to compute a lower bound on the maximal interval width. The values are given

in Table 6 and show that a maximal interval width of 0.12m for py is needed to enclose all

measurements. Our vehicle model and overapproximative approach is responsible for the

additional 0.2m maximal interval width. This value could be possibly lowered with a better

vehicle model. Note that we only compared the maximal widths here. The interval widths of

the reachable sets dependent on the current segment of the driving maneuver and are smaller

for some parts of the maneuvers.

One main concern when generating a conformant verification model is if this model

generalizes and is conformant in unseen situations. Therefore, we performed a small cross-

validation study by generating the reachset conformant model with 3 maneuvers and tested

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

50 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

60 70 80 90 100 110 120 130 140 150 160 170 180

−2

0

2

Subfigure 1

Subfigure 2

px [m]

p
y

[m
]

(a) Overview

66 68 70 72
−2.4

−2.2

−2

−1.8

px [m]

p
y

[m
]

(b) Subfigure 1

130 135 140 145

1.6

1.8

2

2.2

px [m]

p
y

[m
]

(c) Subfigure 2

Figure 16: Projection of the measurements and the reachable sets of the conformant model to the
position coordinates for the single lane-change maneuver.

Model Maneuver px in m py in m ψ in rad

Single man. model Double lane-change 0.27 0.23 0.02
Single man. model Fast double lane-change 0.37 0.29 0.02
Single man. model Single lane-change 0.29 0.20 0.01
Single man. model Slalom 0.30 0.16 0.01

Aggregated model Double lane-change 0.33 0.34 0.02
Aggregated model Fast double lane-change 0.42 0.35 0.02
Aggregated model Single lane-change 0.34 0.36 0.02
Aggregated model Slalom 0.33 0.32 0.02

Collective model Double lane-change 0.29 0.30 0.02
Collective model Fast double lane-change 0.40 0.31 0.02
Collective model Single lane-change 0.30 0.31 0.02
Collective model Slalom 0.29 0.29 0.02

Table 5: Maximal interval widths of the reachable sets for different reachset conformant models and
different maneuvers.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

51 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Maneuver pminx in m pminy in m ψmin in rad

Double lane-change 0.12 0.09 0.006
Fast Double lane-change 0.10 0.12 0.007
Single lane-change 0.16 0.11 0.006
Slalom 0.09 0.11 0.005

Table 6: Maximal difference of all measurements at one point in time. This is a lower bound on the
values in Table 5.

the conformance of this model on the last remaining maneuver. The result is that the model is

reachset conformant when the double lane-change or the single lane-change maneuver is used

as a test maneuver. However, this is not the case for the other two maneuvers. This matches

the previous results that these two maneuvers require more non-determinism to explain the

measurements. As recording experimental data is expensive, we could only use a limited

amount of data for our investigation. In the end, more experimental data is required to build

a robust and conformant model, which has to be challenged with data not used for generating

the model.

5.1.4 Conclusions

In this section we presented a new algorithm to identify non-deterministic reachset conformant

models. To ensure reachset conformance, we bloat deterministic models with non-deterministic

parameters. Advantages of the methods are that they are simple to implement and the tradeoff

between accuracy and the computational effort can be arbitrarily selected.

In our experimental evaluations, we applied the present algorithm to the DLR automated

vehicle, for which we recorded measurements from real experiments. We generated non-

deterministic models, to which the real vehicle is reachset conformant to. Since the resulting

reachable sets of the non-deterministic model have a diameter of at most 0.31m in lateral

direction and 0.40m in longitudinal direction, the model is small enough and ready to be used

for verification purposes. With the reachset conformance framework, we are able to foster the

application of formal methods for verification of automated vehicles and other applications.

5.2 Search-based Conformance Testing for AD use case

In the following section we present our search-based testing setup for reachset conformance

testing an automated driving (AD) use case. Furthermore, we show the applicability of our

approach by numerical experiments.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

52 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

5.2.1 Overview

Figure 17 provides on overview of our search-based reachset conformance testing approach for

an AD use case. We use an abstract bicycle model M which is reachset conformance tested

against a high-fidelity vehicle model MR. As our proposed testing approach is currently under

development and thus required fast feedback loops, we decided to test the abstract model

against a high fidelity model instead of a real physical vehicle. This approach however does

not restrict the application of our method to a real vehicle.

The closed-loop high fidelity model consists of 26 physical states and includes multi-body

dynamics of a vehicle. In contrast, the closed-loop abstract vehicle model only contains 6

physical states. Both models use the same tracking controller that tries to follow a given

reference trajectory. A detailed description on the used models can be found in [14].

Given a sample of a parametrized reference trajectory as input for the tracking controller,

we perform a reachability analysis on the abstract model M and a simulation on the high

fidelity model. With both outputs, the reachset conformance robustness r is then computed

according to Section 4.2.2.

If the model is not conformant, we found an input that falsifies the assumption that the

abstract model is reachset conformant to the high fidelity model. If desired, this counter

example may then be used to refine the model using the methods described in Section 4.1.

If an abstract model is conformant wrt. to an input, the current value of the conformance

metric r is passed to the global optimization algorithm, in our case Bayesian optimization

(see Section 4.2.3). The optimization algorithm then proposes a new set of parameters to be

tested in the next optimization iteration.

5.2.2 Experimental Setup

As mentioned earlier, both the abstract and the high fidelity model contain the same tracking

controller in order to follow reference trajectories that serve as inputs to both models. In

theory, the abstract model could also use an abstraction of the tracking controller to reduce

complexity for the reachability analysis, however, this would make the conformance test more

challenging. In this case, the tracking controller was simple enough so that this was not

necessary. We parametrized the reference trajectories of three different standard maneuvers:

single-lane change, double-lane change and swerve maneuver (fast double-lane change) as

already shown in Figure 15(a)-15(c).

The symmetric single-lane change is parametrized with the three parameters: the desired

constant velocity v0 during the lane change, the width of the lane change w and the total time

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

53 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Input I(p)
Instantiated reference trajectory

Reachability analysis
of abstract bicycle model

Simulation of
 high-fidelity model

Evaluate
conformance metric

Found counter example

Bayesian optimizer:
select new sample p within

parameter space

r < 0

r >= 0

Figure 17: Overview of our search-based reachset conformance testing approach

t the single lane should take. Figuratively, the lane change should be completed after time t

where the vertical change in the direction of travel changes continuously until w is reached.

We decided on choosing the total time t of the single-lane change as parameter instead of,

e.g., the length l of a lane change, since this allowed us to avoid to extreme maneuvers by

setting bounds on time t based on reference tools, e.g., Vires Virtual Test Drive (VTD) [2]

(see Table 7). Furthermore, the bounds for the width w of the single-lane change are based on

the common width of roads in Germany.

Similar to the single-lane change, the symmetric double-lane change is parametrized by

the desired velocity v0 and the width w that is reached before changing back to original

lane. Again, to avoid extreme maneuvers, the time t parametrizes the time to perform both

single-lane changes within the total double-lane change. Additionally, a fourth parameters ts

is introduced which defines the time the vehicle drives straight at width w before performing

the second lane change within the double-lane change maneuver.

The symmetric swerve maneuver has the same three parameters as the single-lane change

maneuver. However, the two parameters time t, width w characterize both the lane change

parts of the maneuver. As the swerve maneuver is more extreme than the other two maneuvers,

the bounds on the parameters are chosen differently (see Table 7). Furthermore, in contrast to

the double-lane change, there is no parameter ts as the vehicle has to change lanes immediately

once width w is reached.

For the reachability analysis of the abstract vehicle model, the initial set R0 was set

equal to the initial state xhifi0 of the high-fidelity vehicle model (R0 = xhifi0). Regarding the

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

54 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Maneuver Number of parameters Parameter bounds

single-lane change 3 10m/s ≤ vo ≤ 20m/s
3m ≤ w ≤ 4m
4s ≤ t ≤ 12s

double-lane change 4 10m/s ≤ vo ≤ 20m/s
3m ≤ w ≤ 4m
4s ≤ t ≤ 12s
2s ≤ ts ≤ 5s

swerve 3 10m/s ≤ vo ≤ 20m/s
1.5m ≤ w ≤ 3m

3s ≤ t ≤ 5s

Table 7: Overview of the parametrization of the input reference trajectories I(p) with the bound on
the parameters of each maneuver

parameters of the conformance metric (see Section 4.2.2), with a focus on passive collision

avoidance, reachset conformance was tested wrt. the two states defining the position of the

vehicle and the orientation of the vehicle. To compute the robustness of the inclusion of a

reference point, the projected 3-dimensional zonotope was approximated by a 1200-polytope

with 1200 evenly distributed normal vectors using the same approach as in [116].

In order to have obtain a candidate abstract vehicle model for conformance testing we

proceededed as follows. We used the identification Algorithm 1 from Section 4.1 to build a

conformant abstract vehicle model. As the measurements that form the basis of the algorithm,

we used simulations of the corner cases wrt. the parameter bounds from Table 7. Note that

regarding the general problem of specification-based testing, testing corner cases is a common

practice within industry. As an example, the parametrized single-lane change maneuver has

23 = 8 corner cases, with

(v0, w, t) ∈ { (10, 3, 4), (20, 3, 4), (10, 4, 4), (20, 4, 4), . . . }.

The swerve maneuver has 8 corner cases as well, whereas the double-lane change has 24 = 16

corner case combinations (since the maneuver is parametrized by 4 parameters). In total, 32

maneuvers where use to build an “assumed to be” conformant abstract vehicle model with

Algorithm 1.

The conformant abstract vehicle models was then conformance tested using two different

approaches: random testing and search-based reachset conformance testing using a Bayesian

optimizer as described in Section 4.2 for each maneuver. For the random testing, we selected

500 random samples of each parameter space of the three maneuvers. Similar, for each

maneuver, the search-based testing approach had 500 iterations to find a parametrization

of a maneuver that falsifies the assumed to be conformant abstract vehicle model. The

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

55 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Maneuver Corner case parameter assignment p Conformance robustness r(p)

single-lane change (v0, w, t) = (20m/s, 3m, 12s) 7.02 · 10−5

double-lane change (v0, w, t, ts) = (20m/s, 3m, 12s, 5s) 5.30 · 10−5

swerve (v0, w, t) = (20m/s, 3m, 3s) 2.74 · 10−5

Table 8: Overview of the parameter assignments with the minimal robustness within the corner
cases of the parameter space for the conformant abstract vehicle model.

Bayesian optimizer was initialized with robustness values of all the corner case parameter

space assignments of each maneuver, to form the basis of the first Gaussian regression. Table 8

shows the parameter assignments out of the set of corner cases of each maneuver that returned

the lowest conformance robustness for the conformant abstract vehicle model. Note that,

since the conformant abstract vehicle model was identified to be conformant to all corner

cases of the three maneuvers, all robustnesses for the corner case parameters are positive.

As an interesting fact, for the single-lane change maneuver, the parameter assignment with

(v0, w, t) = (20m/s, 3m, 12s) return the lowest robustness. Normally, one would assume that

this would be the case for the single lane change with the shorter duration t = 4s. A similar

observation can be made for the double-lane change, additionally, here the robustness with

ts = 5s is lower than with ts = 2s. In contrast, for the swerve maneuver, human intuition

would be right since the lowest robustness is returned for the most extreme choice of parameters

(v0, w, t) = (20m/s, 3m, 3s).

5.2.3 Experimental Results

Table 9 shows for each maneuver the parameter assignments which tested with the lowest

conformance robustness out of the 500 random test cases. We observe that none of the test

cases return a robustness r < 0, thus, no counter example for reachset conformance was

found. Furthermore, no test case returned a lower robustness than corner cases from Table 8.

Similar, Table 10 shows for each maneuver the parameter assignments that returned the lowest

robustness within the search-based conformance testing approach. While also no falsifying

test case was found, the search-based approach using the Bayesian optimizer found test cases

that returned a lower robustness than the 500 random test cases. Yielding test cases with

lower robustnesses in the search-based testing approach results from the Bayesian optimizer’s

surrogate model of the robustness landscape. Here, the surrogate model allows for a more

thorough search in parameter regions that are likely to return low robustnesses. As an example,

Figure 18 and Figure 19 show scatter plots of the evaluated parameter assignments in the

respective testing approaches. For the search-based approach, we observe that considerably

more test cases were chosen with high velocities v0 ≈ 20m/s and widths w ∈ [2.5m, 3m].

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

56 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Thus, the test case assignment of (v0, w, t) = (19.99m/s, 2.54m, 3.01s) was found with a lower

robustness than the random test cases for the swerve maneuver.

Figures 20 to 26 show Voronoi plots of the robustness landscape of the test cases computed

by the search-based testing approach. The Voronoi plots show the projection of two parameters

of the parameter space of a maneuver on the x- and y-axis with the respective robustness

value of a test case on the z-axis, taking the minimum of the robustness values, if two tests

have the same x and y-values. Furthermore, these plots interpolate unselected test cases with

the values of actual test cases that are closest w.r.t. the Euclidean distance. In other words,

each plateau in the plot cooresponds to one test in its center and all z-values visible in the

plots have actually been observed in tests.

One major observation is that in all Vornoi plots we observe monotonicity towards high

values of velocity v0 for all maneuvers. As we explained before, the corner cases of the

parameter space of each maneuver were used to build a conformant model in the first place.

Some of the corner test cases yield the lowest observed robustness of all test cases and thus

are the lowest robustness points in the almost monotonic robustness landscape. We conjecture

that for some use cases, the problem of identifying robust conformant models might be

reducible to identifying a model based on the corner cases of the parameter space. While the

UnCoVerCPS approach already reduces the complex and expensive process of system testing

to testing conformance of models, the effort of finding robust conformant models in the first

place could be reduced considerably.

This observation also highlights one of the advantages of using the UnCoVerCPS method

as opposed to standard black box testing approaches as they are used in the industry. Since

the formal approach to controller design reduces the testing task to conformance testing only

physical models and the (often relatively simple) closed-loop component of a tracking controller,

the testing task is a lot simpler. Physical models often fulfill continuity or monotonicity

assumptions that reduce the number of required tests significantly as opposed to black-box

tests also including the planner software. Since UnCoVerCPS uses a formal approach for

planner design, significant portions of the testing effort can be reduced by relying on formal

proofs.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

57 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Maneuver Parameter assignment p Robustness r(p)

single-lane change (v0, w, t) = (19.02m/s, 3.18m, 11.59s) 7.78 · 10−5

double-lane change (v0, w, t, ts) = (19.87m/s, 3.12m, 11.07s, 4.73s) 6.28 · 10−5

swerve (v0, w, t) = (19.94m/s, 2.70m, 3.03s) 3.78 · 10−5

Table 9: Overview of the parameter assignments with the minimal robustness within the 500 random
test for each maneuver.

Maneuver Parameter assignment p Robustness r(p)

single-lane change (v0, w, t) = (19.99m/s, 3.18m, 11.97s) 7.09 · 10−5

double-lane change (v0, w, t, ts) = (19.96m/s, 3.03m, 11.89s, 4.99s) 5.38 · 10−5

swerve (v0, w, t) = (19.99m/s, 2.54m, 3.01s) 3.29 · 10−5

Table 10: Overview of the parameter assignments with the minimal robustness found with the
search-based reachset conformance testing approach (using a Bayesian optimizer with 500 iterations).

Figure 18: Scatter plot of the 500 evaluations of the random test cases for the single-lane change.
Light-colored green points indicate lower robustnesses.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

58 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 19: Scatter plot of the 500 evaluations of the search-based reachset conformance testing
approach using the Bayesian optimizer for the single-lane change. Light-colored green points indicate
lower robustnesses.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

59 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 20: Voronoi plot (projection (v0, w)) of the 500 evaluations of the search-based reachset
conformance testing approach using the Bayesian optimizer for the single-lane change.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

60 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 21: Voronoi plot (projection (v0, t)) of the 500 evaluations of the search-based reachset
conformance testing approach using the Bayesian optimizer for the single-lane change.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

61 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 22: Voronoi plot (projection (v0, w)) of the 500 evaluations of the search-based reachset
conformance testing approach using the Bayesian optimizer for the double-lane change.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

62 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 23: Voronoi plot (projection (v0, t)) of the 500 evaluations of the search-based reachset
conformance testing approach using the Bayesian optimizer for the double-lane change.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

63 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 24: Voronoi plot (projection (v0, ts)) of the 500 evaluations of the search-based reachset
conformance testing approach using the Bayesian optimizer for the double-lane change.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

64 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 25: Plot (projection (v0, w)) of the robustness values of the 500 evaluations of the search-based
reachset conformance testing approach using the Bayesian optimizer for the swerve maneuver.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

65 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 26: Plot (projection (v0, t)) of the robustness values of the 500 evaluations of the search-based
reachset conformance testing approach using the Bayesian optimizer for the swerve maneuver.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

66 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

We also investigated the swerve maneuver regarding coverage as a test end criterion and

highlight the challenges as described in Section 4.3.

Table 11 summarizes the values of (14) for different Gaussian kernel parameters. The

integral in (14) describes the average probability that a uniformly random selection of a test

case fails according to the Gaussian process model. We mentioned before, that a Gaussian

regression is not unique and depends on a number of hyperparameters.

In Table 11 we choose different Gaussian kernel parameters to illustrate the impact on a

potential test end criterion based on the test cases from the search-based testing approach

for the swerve maneuver. As toolbox, we used MATLAB 2018a’s Statistics and Machine

Learning Toolbox with kernel function “ardexponential” in the Gaussian process and for

numerical integration in (14) the About Guaranteed Automatic Integration Library (GAIL)

[37]. We first normalized each dimension of the parameter space by scaling it with the size of

the interval for the parameter bounds. We then varied the signal standard deviation kernel

parameter for the Gaussian regression. Intuitively speaking, this hyperparameter describes

the increase of uncertainty in the Gaussian process model with increasing Euclidean distance

in the normalized parameter space. In other words, even in the presence of only positive tests,

the estimated probability of finding a negative test will increase, as the Gaussian process will

assign a higher level of uncertainty to unexplored areas of the test space.

We altered this parameter to investigate the impact on (14). Furthermore, Figure 27 shows

a plot in projection (w, v0) of the standard deviation σ2p for the different kernel parameter

of the signal standard deviations of 3 · 10−4 and 10−5. Note that due to the numerics in the

GP regression and the numerics within plotting of Figure 27, the ends of the spikes are not

equal to zero as they theoretically should be for parameter choices equal to actual test cases.

Figure 28 shows the values of P (r < 0|p) (see (13)) that are used in (14). Here, we did not

plot the values with signal standard deviation 10−5 as these are all zero.

Our numerical experiments show, as mentioned before in Section 4.3, that choosing kernel

parameters in the GP regression has a direct influence on the values of the standard deviation

σ2p (see Figure 27) and the probability P (r < 0|p) (see Figure 28) and thus the values of

the integral in (14). If these parameters are not chosen with care, one would be mislead.

Exaggerating, with a signal standard deviation of 10−5, the 500 test cases would be enough to

push the average probability that a uniformly random selection of a test case fails arbitrary

close to zero.

Note that, due to the continuity of the physical models we used for conformance testing,

the Gaussian process regressions reflected the true landscapes rather well. This is again in

contrast to black-box testing problems where one could expect a lot of discontinuities in the

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

67 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Table 11: Overview of the values computed for (14) based on different parameters in the Gaussian
process model for the 500 test cases of the search-based testing approach for the swerve maneuver.

Normalization factor Signal standard deviation Value of Eq. (14)

parameter bounds of swerve maneuver 100 50%
parameter bounds of swerve maneuver 3 · 10−4 1%
parameter bounds of swerve maneuver 10−5 0%

Figure 27: Plot (projection (w, v0) for constant t = 3) of the standard deviation σ2
p within GP

regressions for signal standard deviation 3 · 10−4 (above) and 10−5 (below) based on the test cases
from the search-based testing approach of the swerve maneuver.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

68 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

Figure 28: Plot (projection (w, v0) for constant t = 3) of P (r < 0|p) (according to (13)) for the
signal standard deviation 3 · 10−4 based on the test cases from the search-based testing approach of
the swerve maneuver. Note that we did not plot the values with signal standard deviation 10−5 as
these are all zero.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

69 of 78

5 APPLICATION OF CONFORMANCE TESTING METHODS TO THE AUTOMATED
DRIVING USE CASE

robustness landscape, as for example the planner part of the software would also be included.

Nevertheless, this work is only a starting point, as physical models with closed loop controller

will often also exhibit some switching which needs to be captured by a regression model.

Also, as we illustrated, the quantitative measure APSV is highly dependent on the

regression hyperparameters. While it seems that suitable choices for these could be argued

from assumptions on the physical system (e.g., bounds on parameter sensitivities), the precise

definition of such hyperparameters is still an open problem for the automated driving use

case.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

70 of 78

6 CONCLUSIONS

6 Conclusions

In this deliverable we presented a survey conformance relations for cyber-physical systems in

Section 2. The survey presented definitions of conformance relations, what properties transfer

with conformance, and what which conformance verification and conformance testing methods

exist.

Section 3 discussed how conformance testing as used within in UnCoVerCPS relates to

the development process from an automotive perspective. In summary, conformance testing

latches on existing process steps, however there is an increase in complexity as models and

verification techniques have to include non-deterministic uncertainties in a set-based fashion.

Within Section 4 we introduced a novel algorithm to identify reachset conformant models.

Furthermore, we introduced an approach for automated reachset conformance test case

generation. In order to decide when to stop testing, we presented a novel approach for test

coverage as a test end criterion with focus on continuous dynamics.

Section 5 presented experimental results for the approaches introduced in Section 4. We

showed that our novel algorithm is able to identify reachset conformant vehicle models for all

recorded measurements from real experiments of the DLR vehicle. Thereby, the identified

models are not too conservative and thus likely to be of use within UnCoVerCPS online

verification approach.

The numerical experiments for test case generation revealed that, compared to random

testing, the proposed search-based testing approach for reachset conformance is more likely

to find more crucial test cases within the same amount of test cases. Furthermore, our

experiments indicate that identifying robust conformant models might be reducible to an

identification on the corner cases of the input parameter space. Thus, effort in the development

process could be reduced. This is a clear advantage of the UnCoVerCPS approach over the

state of the art in industry, as the formal nature of the UnCoVerCPS controller leads to

simpler, decomposed testing problems on individual physical models. Our experiments indicate

that a significant reduction of testing effort is possible in this manner.

Regarding test coverage based on Gaussian surrogate models for use within a test end

criterion, our experiments highlighted the necessity to research and discuss the “right” hy-

perparameters within the presented approach. Furthermore, additional political and societal

discussions as well as statistical arguments are required to result in some kind of norm or

standard, which is still very much work in progress.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

71 of 78

REFERENCES

References

[1] UnCoVerCPS Deliverable D5.2: Report on conformance testing of application models. Technical report.

[2] Vires - virtual test drive: https://vires.com/vtd-vires-virtual-test-drive/.

[3] A. Abate. Approximation metrics based on probabilistic bisimulations for general state-space markov
processes: a survey. Electronic Notes in Theoretical Computer Science, 297:3–25, 2013.

[4] H. Abbas and G. Fainekos. Towards composition of conformant systems. arXiv preprint arXiv:1511.05273,
2015.

[5] H. Abbas, B. Hoxha, G. E. Fainekos, J. V. Deshmukh, J. Kapinski, and K. Ueda. Conformance testing
as falsification for cyber-physical systems. CoRR, abs/1401.5200, 2014.

[6] H. Abbas, H. D. Mittelmann, and G. E. Fainekos. Formal property verification in a conformance testing
framework. In Twelfth ACM/IEEE International Conference on Formal Methods and Models for Codesign,
MEMOCODE 2014, Lausanne, Switzerland, October 19-21, 2014, pages 155–164. IEEE, 2014.

[7] A. Aerts, M. R. Mousavi, and M. A. Reniers. A tool prototype for model-based testing of cyber-physical
systems. In M. Leucker, C. Rueda, and F. D. Valencia, editors, Theoretical Aspects of Computing -
ICTAC 2015 - 12th International Colloquium Cali, Colombia, October 29-31, 2015, Proceedings, volume
9399 of Lecture Notes in Computer Science, pages 563–572. Springer, 2015.

[8] A. Aerts, M. Reniers, and M. Mousavi. Chapter 19 - model-based testing of cyber-physical systems.
In H. Song, D. B. Rawat, S. Jeschke, and C. Brecher, editors, Cyber-Physical Systems, Intelligent
Data-Centric Systems, pages 287 – 304. Academic Press, Boston, 2017.

[9] B. K. Aichernig, H. Brandl, E. Jöbstl, and W. Krenn. Model-based mutation testing of hybrid systems.
In F. S. de Boer, M. M. Bonsangue, S. Hallerstede, and M. Leuschel, editors, Formal Methods for
Components and Objects - 8th International Symposium, FMCO 2009, Eindhoven, The Netherlands,
November 4-6, 2009. Revised Selected Papers, volume 6286 of Lecture Notes in Computer Science, pages
228–249. Springer, 2009.

[10] B. K. Aichernig, H. Brandl, and F. Wotawa. Conformance testing of hybrid systems with qualitative
reasoning models. Electronic Notes in Theoretical Computer Science, 253(2):53–69, 2009.

[11] B. K. Aichernig, F. Lorber, and D. Nickovic. Time for mutants - model-based mutation testing with
timed automata. In M. Veanes and L. Viganò, editors, Tests and Proofs - 7th International Conference,
TAP 2013, Budapest, Hungary, June 16-20, 2013. Proceedings, volume 7942 of Lecture Notes in Computer
Science, pages 20–38. Springer, 2013.

[12] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015.

[13] M. Althoff and J. M. Dolan. Set-based computation of vehicle behaviors for the online verification
of autonomous vehicles. In Intelligent Transportation Systems (ITSC), 2011 14th International IEEE
Conference on, pages 1162–1167. IEEE, 2011.

[14] M. Althoff and J. M. Dolan. Reachability computation of low-order models for the safety verification of
high-order road vehicle models. In American Control Conference, ACC 2012, Montreal, QC, Canada,
June 27-29, 2012, pages 3559–3566. IEEE, 2012.

[15] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM, 43(1):116–146,
1996.

[16] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement for hierarchical hybrid systems. In
International Workshop on Hybrid Systems: Computation and Control, pages 33–48. Springer, 2001.

[17] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional modeling and refinement for hierarchical
hybrid systems. The Journal of Logic and Algebraic Programming, 68(1-2):105–128, 2006.

[18] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement relations. In
D. Sangiorgi and R. de Simone, editors, CONCUR ’98: Concurrency Theory, 9th International Conference,
Nice, France, September 8-11, 1998, Proceedings, volume 1466 of Lecture Notes in Computer Science,
pages 163–178. Springer, 1998.

[19] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88(7):971–984, 2000.

[20] Y. S. R. Annapureddy and G. E. Fainekos. Ant colonies for temporal logic falsification of hybrid systems.
In Proc. of the 36th Annual Conference of IEEE Industrial Electronics, pages 91–96, 2010.

[21] D. Araiza-Illan, D. Western, A. Pipe, and K. Eder. Coverage-driven verification: An approach to verify
code for robots that directly interact with humans. In Proc. of the 11th International Hardware and
Software: Verification and Testing, pages 69–84, 2015.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

72 of 78

REFERENCES

[22] D. Araiza-Illan, D. Western, A. Pipe, and K. Eder. Systematic and realistic testing in simulation of
control code for robots in collaborative human-robot interactions. In Towards Autonomous Robotic
Systems: 17th Annual Conference, pages 20–32, 2016.

[23] D. Araiza-Illan, D. Western, A. Pipe, and K. Eder. Systematic and realistic testing in simulation of
control code for robots in collaborative human-robot interactions. In Towards Autonomous Robotic
Systems: 17th Annual Conference, pages 20–32, 2016.

[24] H. Araujo, G. Carvalho, A. Sampaio, M. R. Mousavi, and M. Taromirad. A process for sound conformance
testing of cyber-physical systems. In 2017 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 46–50, March 2017.

[25] R. Back and J. von Wright. Refinement Calculus - A Systematic Introduction. Graduate Texts in
Computer Science. Springer, 1998.

[26] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series). The MIT
Press, 2008.

[27] R. Banach, H. Zhu, W. Su, and X. Wu. Continuous asm, and a pacemaker sensing fragment. In
International Conference on Abstract State Machines, Alloy, B, VDM, and Z, pages 65–78. Springer,
2012.

[28] O. Beg, H. Abbas, T. T. Johnson, and A. Davoudi. Model validation of PWM DC-DC converters. IEEE
Trans. Industrial Electronics, 64(9):7049–7059, 2017.

[29] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving simulations. In G. von
Bochmann and D. K. Probst, editors, Computer Aided Verification, Fourth International Workshop, CAV
’92, Montreal, Canada, June 29 - July 1, 1992, Proceedings, volume 663 of Lecture Notes in Computer
Science, pages 260–273. Springer, 1992.

[30] G. Bian and A. Abate. On the relationship between bisimulation and trace equivalence in an approximate
probabilistic context. In International Conference on Foundations of Software Science and Computation
Structures, pages 321–337. Springer, 2017.

[31] H. Brandl, G. Fraser, and F. Wotawa. Coverage-based testing using qualitative reasoning models. In
Proceedings of the Twentieth International Conference on Software Engineering & Knowledge Engineering
(SEKE’2008), San Francisco, CA, USA, July 1-3, 2008, pages 393–398. Knowledge Systems Institute
Graduate School, 2008.

[32] H. Brandl, M. Weiglhofer, and B. K. Aichernig. Automated conformance verification of hybrid systems.
In Quality Software (QSIC), 2010 10th International Conference on, pages 3–12. IEEE, 2010.

[33] M. L. Bujorianu, J. Lygeros, and M. C. Bujorianu. Bisimulation for general stochastic hybrid systems.
In International Workshop on Hybrid Systems: Computation and Control, pages 198–214. Springer, 2005.

[34] A. Casagrande. Hybrid automata and bisimulations. EUT Edizioni Università di Trieste, 2010.

[35] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems. In
Proc. of Computer-Aided Verification, LNCS 8044, pages 258–263. Springer, 2013.

[36] J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision coverage to software testing.
Software Engineering Journal, 9(5):193–200, Sep. 1994.

[37] S.-C. T. Choi, Y. Ding, F. J. Hickernell, L. Jiang, L. D. Jiménez Rugama, Llúıs Antoni, J. Rathinavel,
K. Zhang, X. Tong, Y. Zhang, and X. Zhou. GAIL: Guaranteed Automatic Integration Library (Version
2.2), MATLAB Software, 2017.

[38] T. S. Chow. Testing software design modeled by finite-state machines. IEEE transactions on software
engineering, (3):178–187, 1978.

[39] D. Chu and D. D. Siljak. A canonical form for the inclusion principle of dynamic systems. SIAM Journal
on Control and Optimization, 44(3):969–990, 2005.

[40] P. J. Cuijpers. On bicontinuous bisimulation and the preservation of stability. In International Workshop
on Hybrid Systems: Computation and Control, pages 676–679. Springer, 2007.

[41] T. Dang. Model-based testing of hybrid systems. In J. Zander, I. Schieferdecker, and P. J. Mosterman,
editors, Model-Based Testing for Embedded Systems, chapter 14, pages 383–424. CRC Press, Inc., 2011.

[42] T. Dang and T. Nahhal. Coverage-guided test generation for continuous and hybrid systems. Formal
Methods in System Design, 34(2):183–213, 2009.

[43] T. Dang and T. Nahhal. Model-based testing of hybrid systems. Technical report, Verimag, IMAG, Nov
2007.

[44] T. Dang and N. Shalev. Test coverage estimation using threshold accepting. In F. Cassez and J.-F.
Raskin, editors, Automated Technology for Verification and Analysis, volume 8837 of Lecture Notes in
Computer Science, pages 115–128. Springer International Publishing, 2014.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

73 of 78

REFERENCES

[45] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu. Quantifying conformance using the skorokhod
metric. In D. Kroening and C. S. Pasareanu, editors, Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of
Lecture Notes in Computer Science, pages 234–250. Springer, 2015.

[46] A. D’Innocenzo, A. Abate, and M. D. D. Benedetto. Approximate abstractions of discrete-time controlled
stochastic hybrid systems. In Proceedings of the 47th IEEE Conference on Decision and Control, CDC
2008, December 9-11, 2008, Cancún, México, pages 221–226. IEEE, 2008.

[47] A. Donzé. Trajectory-Based Verification and Controller Synthesis for Continuous and Hybrid Systems.
PhD thesis, University Joseph Fourier, 2007.

[48] A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In Proc. of
Computer-Aided Verification, pages 167–170, 2010.

[49] G. Frehse. Compositional Verification of Hybrid Systems Using Simulation Relations. PhD thesis,
Radboud Universiteit Nijmegen, 2005.

[50] G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In M. Morari and L. Thiele,
editors, Hybrid Systems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich,
Switzerland, March 9-11, 2005, Proceedings, volume 3414 of Lecture Notes in Computer Science, pages
258–273. Springer, 2005.

[51] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler. SpaceEx: scalable verification of hybrid systems. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 379–395. Springer,
2011.

[52] G. Frehse, Z. Han, and B. Krogh. Assume-guarantee reasoning for hybrid i/o-automata by over-
approximation of continuous interaction. In Decision and Control, 2004. CDC. 43rd IEEE Conference
on, volume 1, pages 479–484. IEEE, 2004.

[53] A. Girard. A composition theorem for bisimulation functions. arXiv preprint arXiv:1304.5153, 2013.

[54] A. Girard. Computational Approaches to Analysis and Control of Hybrid Systems. Nov. 2013. Habilitation.

[55] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation relations for hybrid systems. IFAC
Proceedings Volumes, 39(5):106–111, 2006.

[56] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation relations for hybrid systems. Discrete
Event Dynamic Systems, 18(2):163–179, 2008.

[57] A. Girard and G. Pappas. Approximation metrics for discrete and continuous systems. Automatic
Control, IEEE Transactions on, 52(5):782–798, May 2007.

[58] A. Girard and G. J. Pappas. Approximate bisimulations for constrained linear systems. In Proceedings
of the 44th IEEE Conference on Decision and Control, pages 4700–4705. IEEE, 2005.

[59] A. Girard and G. J. Pappas. Approximate bisimulations for nonlinear dynamical systems. In Decision
and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on,
pages 684–689. IEEE, 2005.

[60] A. Girard and G. J. Pappas. Approximate bisimulation relations for constrained linear systems. Auto-
matica, 43(8):1307 – 1317, 2007.

[61] A. Girard and G. J. Pappas. Hierarchical control system design using approximate simulation. Automatica,
45(2):566–571, 2009.

[62] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic models for incrementally stable
switched systems. IEEE Transactions on Automatic Control, 55(1):116–126, 2010.

[63] K. A. Grasse. Simulation and bisimulation of nonlinear control systems with admissible classes of inputs
and disturbances. SIAM J. Control Optim., 46(2):562–584, Apr. 2007.

[64] K. A. Grasse and N. Ho. Simulation relations and controllability properties of linear and nonlinear
control systems. SIAM Journal on Control and Optimization, 53(3):1346–1374, 2015.

[65] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for dynamical, control, and hybrid
systems. Theor. Comput. Sci., 342(2-3):229–261, 2005.

[66] T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE Symposium on
Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 278–292, 1996.

[67] T. A. Henzinger, R. Majumdar, and V. S. Prabhu. Quantifying similarities between timed systems. In
P. Pettersson and W. Yi, editors, Formal Modeling and Analysis of Timed Systems, Third International
Conference, FORMATS 2005, Uppsala, Sweden, September 26-28, 2005, Proceedings, volume 3829 of
Lecture Notes in Computer Science, pages 226–241. Springer, 2005.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

74 of 78

REFERENCES

[68] T. A. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierarchical hybrid systems.
In International Workshop on Hybrid Systems: Computation and Control, pages 275–290. Springer, 2001.

[69] D. Heß, M. Althoff, and T. Sattel. Formal verification of maneuver automata for parameterized motion
primitives. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 1474–1481. IEEE, 2014.

[70] D. Heß, C. Löper, and T. Hesse. Safe cooperation of automated vehicles. In AAET - Automatisiertes und
vernetztes Fahren, Beitr”age zum gleichnamigen 18. Braunschweiger Symposium vom 8. und 9. Februar
2017, pages 309–334. ITS automotive nord e.V., 2017.

[71] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe, M. Harman,
K. Kapoor, P. J. Krause, G. Lüttgen, A. J. H. Simons, S. A. Vilkomir, M. R. Woodward, and H. Zedan.
Using formal specifications to support testing. ACM Comput. Surv., 41(2):9:1–9:76, 2009.

[72] N. Ho. Controllability of Linear and Nonlinear Control Systems Related Through Simulation Relations.
PhD thesis, UNIVERSITY OF OKLAHOMA, 2015.

[73] M. Ikeda, D. Siljak, and D. White. An inclusion principle for dynamic systems. In American Control
Conference, 1982, pages 884–892. IEEE, 1982.

[74] A. A. Julius. Approximate abstraction of stochastic hybrid automata. In J. P. Hespanha and A. Tiwari,
editors, Hybrid Systems: Computation and Control, 9th International Workshop, HSCC 2006, Santa
Barbara, CA, USA, March 29-31, 2006, Proceedings, volume 3927 of Lecture Notes in Computer Science,
pages 318–332. Springer, 2006.

[75] A. A. Julius, A. D’Innocenzo, M. D. D. Benedetto, and G. J. Pappas. Approximate equivalence and
synchronization of metric transition systems. Systems & Control Letters, 58(2):94–101, 2009.

[76] A. A. Julius, A. Girard, and G. J. Pappas. Approximate bisimulation for a class of stochastic hybrid
systems. In 2006 American Control Conference, pages 6–pp. IEEE, 2006.

[77] A. A. Julius and G. J. Pappas. Approximations of stochastic hybrid systems. IEEE Transactions on
Automatic Control, 54(6):1193–1203, 2009.

[78] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg. On systematic simulation of open continuous
systems. In Hybrid Systems: Computation and Control, LNCS 2623, pages 283–297. Springer, 2003.

[79] N. Khakpour and M. R. Mousavi. Notions of Conformance Testing for Cyber-Physical Systems: Overview
and Roadmap (Invited Paper). In L. Aceto and D. de Frutos Escrig, editors, 26th International Conference
on Concurrency Theory (CONCUR 2015), volume 42 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 18–40, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[80] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon. Supervisory control of hybrid
systems. Proceedings of the IEEE, 88(7):1026–1049, 2000.

[81] M. Krichen and S. Tripakis. Conformance testing for real-time systems. Formal Methods in System
Design, 34(3):238–304, 2009.

[82] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-a survey. Proceedings
of the IEEE, 84(8):1090–1123, 1996.

[83] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking, and M. Althoff. Provably safe motion
of mobile robots in human environments. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pages 1351–1357.
IEEE, 2017.

[84] S. M. Loos and A. Platzer. Differential refinement logic. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 505–514. ACM, 2016.

[85] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O automata revisited. In M. D. D. Benedetto
and A. L. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control, 4th International
Workshop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of Lecture Notes in
Computer Science, pages 403–417. Springer, 2001.

[86] G. Ma, L. Qin, X. Liu, C. Shi, and G. Wu. Approximate bisimulations for constrained discrete-time
linear systems. In Control, Automation and Systems (ICCAS), 2015 15th International Conference on,
pages 1058–1063. IEEE, 2015.

[87] R. Majumdar and V. S. Prabhu. Computing the skorokhod distance between polygonal traces. In
Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pages
199–208. ACM, 2015.

[88] R. Majumdar and V. S. Prabhu. Computing distances between reach flowpipes. In Proceedings of the
19th International Conference on Hybrid Systems: Computation and Control, pages 267–276. ACM, 2016.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

75 of 78

REFERENCES

[89] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Y. Lakhnech and
S. Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
Joint International Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004
and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings, volume 3253 of Lecture Notes in Computer Science, pages 152–166.
Springer, 2004.

[90] I. M. Mitchell. Comparing forward and backward reachability as tools for safety analysis. In A. Bemporad,
A. Bicchi, and G. C. Buttazzo, editors, Hybrid Systems: Computation and Control, 10th International
Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceedings, volume 4416 of Lecture Notes in
Computer Science, pages 428–443. Springer, 2007.

[91] S. Mitsch and A. Platzer. Modelplex: Verified runtime validation of verified cyber-physical system models.
Formal Methods in System Design, 49(1-2):33–74, 2016.

[92] S. Mitsch, J.-D. Quesel, and A. Platzer. Refactoring, refinement, and reasoning. In International
Symposium on Formal Methods, pages 481–496. Springer, 2014.

[93] M. Mohaqeqi and M. Mousavi. Towards an approximate conformance relation for hybrid i/o automata. In
Proceedings of the 1st International Workshop on Verification and Validation of Cyber-Physical Systems
(V2CPS), 2016.

[94] M. Mohaqeqi and M. R. Mousavi. Sound test-suites for cyber-physical systems. In 10th International
Symposium on Theoretical Aspects of Software Engineering, TASE 2016, Shanghai, China, July 17-19,
2016, pages 42–48. IEEE Computer Society, 2016.

[95] M. Mohaqeqi, M. R. Mousavi, and W. Taha. Conformance testing of cyber-physical systems: A
comparative study. ECEASST, 70, 2014.

[96] L. Munteanu and K. A. Grasse. Constructing simulation relations for ido systems affine in inputs and
disturbances. Mathematics of Control, Signals, and Systems, 27(3):317–346, 2015.

[97] A. Murthy, M. A. Islam, E. Bartocci, E. M. Cherry, F. H. Fenton, J. Glimm, S. A. Smolka, and R. Grosu.
Approximate bisimulations for sodium channel dynamics. In Computational Methods in Systems Biology,
pages 267–287. Springer, 2012.

[98] A. Murthy, M. A. Islam, S. A. Smolka, and R. Grosu. Computing bisimulation functions using sos
optimization and δ-decidability over the reals. In Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pages 78–87. ACM, 2015.

[99] A. Murthy, M. A. Islam, S. A. Smolka, and R. Grosu. Computing compositional proofs of input-to-output
stability using sos optimization and δ-decidability. Nonlinear Analysis: Hybrid Systems, 23:272–286,
2017.

[100] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivančić, A.Gupta, and G. J. Pappas. Monte-carlo
techniques for falsification of temporal properties of non-linear hybrid systems. In Hybrid Systems:
Computation and Control, pages 211–220, 2010.

[101] H. Pan, M. Zhang, and Y. Chen. Approximate simulation for metric hybrid input/output automata. In
Secure Software Integration & Reliability Improvement Companion (SSIRI-C), 2011 5th International
Conference on, pages 53–59. IEEE, 2011.

[102] G. J. Pappas. Bisimilar linear systems. Automatica, 39(12):2035–2047, 2003.

[103] A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for hybrid systems (system description).
In International Joint Conference on Automated Reasoning, pages 171–178. Springer, 2008.

[104] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic models for nonlinear control
systems. Automatica, 44(10):2508–2516, 2008.

[105] G. Pola, A. J. Van Der Schaft, and M. D. Di Benedetto. Bisimulation theory for switching linear systems.
2004.

[106] P. Prabhakar, G. Dullerud, and M. Viswanathan. Pre-orders for reasoning about stability. In Proceedings
of the 15th ACM international conference on Hybrid Systems: Computation and Control, pages 197–206.
ACM, 2012.

[107] P. Prabhakar, G. Dullerud, and M. Viswanathan. Stability preserving simulations and bisimulations for
hybrid systems. IEEE Transactions on Automatic Control, 60(12):3210–3225, 2015.

[108] P. Prabhakar and J. Liu. Bisimulations for input-output stability of hybrid systems. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 5515–5520, Dec 2016.

[109] V. Preoteasa and S. Tripakis. Towards compositional feedback in non-deterministic and non-input-
receptive systems. In M. Grohe, E. Koskinen, and N. Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016,
pages 768–777. ACM, 2016.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

76 of 78

REFERENCES

[110] J.-D. Quesel. Similarity, Logic, and Games: Bridging Modeling Layers of Hybrid Systems. PhD thesis,
2013.

[111] J.-F. Raskin. Logics, automata and classical theories for deciding real time. PhD thesis, Facultés
universitaires Notre-Dame de la Paix, Namur, 1999.

[112] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive computation
and machine learning. MIT Press, 2006.

[113] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff, and E. H. andTobias Nipkow.
Formalising and monitoring traffic rules for autonomous vehicles in isabelle/hol. In N. Polikarpova and
S. Schneider, editors, integrated Formal Methods (iFM 2017), volume 10510, pages 50–66, 2017.

[114] H. Roehm, T. Heinz, and E. C. Mayer. Stlinspector: STL validation with guarantees. In R. Majumdar and
V. Kuncak, editors, Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science,
pages 225–232. Springer, 2017.

[115] H. Roehm, J. Oehlerking, T. Heinz, and M. Althoff. STL model checking of continuous and hybrid
systems. In C. Artho, A. Legay, and D. Peled, editors, Automated Technology for Verification and
Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings,
volume 9938 of Lecture Notes in Computer Science, pages 412–427, 2016.

[116] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff. Reachset conformance testing of hybrid automata.
In Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC
2016, Vienna, Austria, April 12-14, 2016, pages 277–286, 2016.

[117] M. Roggenbach and M. Majster-Cederbaum. Towards a unified view of bisimulation: a comparative
study. Theoretical Computer Science, 238(1):81 – 130, 2000.

[118] B. S. Rüffer, C. M. Kellett, and S. R. Weller. Integral input-to-state stability of interconnected iiss systems
by means of a lower-dimensional comparison system. In Decision and Control, 2009 held jointly with the
2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on,
pages 638–643. IEEE, 2009.

[119] J. Schmaltz and J. Tretmans. On conformance testing for timed systems. In F. Cassez and C. Jard,
editors, Formal Modeling and Analysis of Timed Systems, 6th International Conference, FORMATS 2008,
Saint Malo, France, September 15-17, 2008. Proceedings, volume 5215 of Lecture Notes in Computer
Science, pages 250–264. Springer, 2008.

[120] G. V. Smirnov. Introduction to the Theory of Differential Inclusions. American Mathematical Society,
2002.

[121] A. M. Stanković, S. D. Dukić, and A. T. Sarić. Approximate bisimulation-based reduction of power
system dynamic models. IEEE Transactions on Power Systems, 30(3):1252–1260, 2015.

[122] T. Strathmann and J. Oehlerking. Experience report: Verifying properties of an electro-mechanical
braking system. ARCH, 2015.

[123] P. Tabuada. Approximate simulation relations and finite abstractions of quantized control systems. In
International Workshop on Hybrid Systems: Computation and Control, pages 529–542. Springer, 2007.

[124] P. Tabuada. Verification and Control of Hybrid Systems - A Symbolic Approach. Springer, 2009.

[125] P. Tabuada and G. J. Pappas. Bisimilar control affine systems. Systems & Control Letters, 52(1):49–58,
2004.

[126] P. Tabuada, G. J. Pappas, and P. Lima. Compositional abstractions of hybrid control systems. In
Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, volume 1, pages 352–357.
IEEE, 2001.

[127] P. Tabuada, G. J. Pappas, and P. Lima. Compositional abstractions of hybrid control systems. Discrete
Event Dynamic Systems, 14(2):203–238, 2004.

[128] H. Tanner and G. J. Pappas. Simulation relations for discrete-time linear systems. IFAC Proceedings
Volumes, 35(1):445–450, 2002.

[129] H. G. Tanner and G. J. Pappas. Abstractions of constrained linear systems. In American Control
Conference, 2003. Proceedings of the 2003, volume 4, pages 3381–3386. IEEE, 2003.

[130] S. Tasiran. Compositional and hierarchical techniques for the formal verification of real-time systems.
PhD thesis, Citeseer, 1998.

[131] G. J. Tretmans. A formal approach to conformance testing. PhD thesis, Universiteit Twente, 1992.

[132] J. Tretmans. Testing concurrent systems: A formal approach. In J. C. M. Baeten and S. Mauw, editors,
CONCUR ’99: Concurrency Theory, 10th International Conference, Eindhoven, The Netherlands, August
24-27, 1999, Proceedings, volume 1664 of Lecture Notes in Computer Science, pages 46–65. Springer,
1999.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

77 of 78

REFERENCES

[133] A. Van Der Schaft. Bisimulation of dynamical systems. In International Workshop on Hybrid Systems:
Computation and Control, pages 555–569. Springer, 2004.

[134] A. van der Schaft. Equivalence of dynamical systems by bisimulation. IEEE Trans. Automat. Contr.,
49(12):2160–2172, 2004.

[135] M. Van Osch. Hybrid input-output conformance and test generation. In Formal Approaches to Software
Testing and Runtime Verification, pages 70–84. Springer, 2006. appended file is a more detailed technical
report.

[136] M. P. W. J. van Osch. Automated model-based testing of hybrid systems. PhD thesis, Eindhoven University
of Technology, 2009.

[137] C. Wang, J. Wu, H. Tan, and J. Fu. Approximate reachability and bisimulation equivalences for transition
systems. Transactions of Tianjin University, 22:19–23, 2016.

[138] G. Yan, L. Jiao, Y. Li, S. Wang, and N. Zhan. Approximate bisimulation and discretization of hybrid
csp. In FM 2016: Formal Methods: 21st International Symposium, Limassol, Cyprus, November 9-11,
2016, Proceedings 21, pages 702–720. Springer, 2016.

[139] K. Yang and H. Ji. Hierarchical analysis of large-scale control systems via vector simulation function.
Systems & Control Letters, 102:74 – 80, 2017.

Deliverable D1.3 – Report on Conformance Testing in the Development
Process

78 of 78

