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Abstract— This paper addresses the design of the control introduced approximation error can be accounted for as a
input to a discrete time piecewise affine system so as to optire fictitious additive disturbance so that the obtained cdlatro
its performance along a finite time horizon. The system is performance or the outcome of the verification are guar-

affected by some additive stochastic disturbance and is sjdzt teed. alth h fi = tati Vi
to constraints that need to be appropriately accounted for m anteed, although conservative. From a computational view-

the design. By enforcing constraints to be satisfied for almst ~ Point, verification and control design problems for PWA sys-
all disturbance realizations except for a set of probabiliy ¢, tems can be formulated as Mixed Integer Linear or Quadratic

we can decide to what extent trading robustness for improvig  Programming (MILP/ MIQP) problems, since PWA systems
performance and also cope with the case of disturbance with are described by affine equations and inequalities, and mode

unbounded support. Inspired by the existing literature, we e . . L .
propose a method to realize this trade-off, which combines switching can be described by introducing integer varisble

the scenario approach to chance-constrained optimizatiowitn 1€ resulting optimization problems are NP hard to solvé, bu
robust optimal control of piecewise affine systems. Intergggly, = many algorithms and software tools exist to tackle thems Thi

no explicit knowledge of the disturbance distribution is n@ded  js in essence what is done when PWA systems are converted
but only some disturbance realizations, thus resulting in adata- into Mixed Logical and Dynamical (MLD) systems, [6]-[8]
driven design method. - . ) '
which are equivalent to PWA systems under suitable well-
. INTRODUCTION posedness conditions, [9].

In this paper, we address control input design for a Here, we are concerned with a PWA system that is

discrete time PieceWise Affine (PWA) system affected byuPiect to a possibly unbounded disturbance, and address
a stochastic disturbance, possibly with unbounded suppoff€ design of the control input that minimizes a given cost
The probabilistic characteristics of the disturbance men  fUnction while satisfying actuation and state constraihte
indirectly, thought historical data, and the goal is to oyitie disturbance is stochastic and its probability distribai®not

the controlled system performance over a finite time horizofNOWn explicitly but only indirectly via some independent

while satisfying state and actuation constraints. realizations extracted at random from such a distribution,
PWA systems are characterized by a polyhedral partitioffhich calls for a data-driven approach. Due to the state

of the state cross (control and disturbance) input spaczh ggfonstraints and the fact that the disturbance is possibly

element in the partition is mode and has associated a certaindnPounded, we cannot address the problem according to a

affine dynamics. The mode — and, hence, the correspondiWQrSt case, 100% robust, perspective where constraints mus
affine dynamics — is active when £he staté and input beIorﬂgOld for every and each disturbance realization. We instead
to that element of the partition. formulate the problem according to a probabilistic perspec

The class of PWA systems have been extensively studidye; Where state constraints are enforced and performance
in the literature, with reference to the analysis of prOper(_)ptlmlzed over a set of disturbance realizations of prdigbi

ties like controllability and observability, and probletilee 1 — ¢ With the parameter € (0, 1) setting the appropriate
model reduction and minimal realization, identificatioayt COMPromise between performance and robustness. The re-
detection and estimation, stabilization, and control, seg, sulting chance-constrained optimization program is hard t
[1, Chapters 4 and 5]. This is partly motivated by the facPe solved, also because of the PWA dynamics. We then tackle

that methods from linear systems theory can be adapted 'toi2 the two step procedure suggested in [10], where the
a PWA modeling framework. Moreover, various systems graisturbance is first confined to a compact set of probability
naturally described as PWA systems and nonlinear systerhs ¢ @nd then a robust optimization problem is formulated
can be approximated up to a desired accuracy level wiffVe" the obtained compact set. As for the first step, we resort
PWA models by means of suitable hybridization procedurd® the so-called scenario approach, [11]-{13], to define a
(see,egq., [2]-[5]). In robust control and verification, the 20X Of probability 1 — ¢ for the disturbance. Remarkably,
this approach requires only to know disturbance realinatio
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of the robust constraints as a set-containment condition asth H* and H} denoting the matrices of thef-
suggested in [14] in the context of PWA systems testing an@gpresentation oft,, k =1,2,...,7T.

verification. In [15], a similar robust optimization probtes Note that the cost/ in (3) is actually uncertain since it
addressed but for linear systems and an LMI (Linear Matrigepends on the disturbance vector

Inequalities) reformulation is adopted. In [16], robushtol , , py T
for PWA systems is performed but based on some robust w = [w(0) w(l)” ... w(T —1)] e R™

mode control restriction, [17], that makes the mode seq@ienghrough the state evolutiom(k + 1), k = 0,...,7 — 1,

of the controlled system independent of the disturbanGghich is obtained via the PWA dynamics (1) initialized with

realization. x(0) = zo. To recall this dependence an, we shall use the
The rest of the paper is organized as follows. We descriitation.,, and z,, when needed.

the problem addressed and the resulting chance-constraine|n order to take into account the uncertainty we adopt

optimization program formulation in Section II. In Sectiong probabilistic perspective and impose that an upper bound
Il a data-driven MILP solution to the chance-constrainegd on the cost (3) is minimized and constraints are satisfied
optimization program is worked out by integrating scenarigor all disturbance realizations except for a set of a priori

and robust optimization. Section IV draws some concludingefined probabilitye € (0,1). More precisely, we address

remarks and outline further research directions. the following problem
Il. PROBLEM FORMULATION min / (5)
veV L

We consider a discrete time system with state R™ and subject to:
cpntrol inputy € R™v, Wh|ch is aﬁgcted by some stochastic P {Ju(v) < CATw(k) € Xy, k=1,2...T} > 1 ¢,
disturbancew € R™~ with a possibly unbounded support.
The state of the system evolves according to a PieceWigéere P, is the probability induced on the system tra-
Affine (PWA) dynamics, that is its dynamics is affine andectories by the uncertaintyw, and V is the box with
given by lower and upper boundy = [v; v} ... v,_;] and
Y " v =[v, v, ... vp_,], respectively, that isy = [v, 7] =

o(k+1) = Adiw(k) + Biv(k) + Bfw(k) + fi (1) [y 5% [uy, 5] - - % [ug_y, T7—1]. The minimizefv*, £%)
when [2/ (k) v/ (k) w’(k)]/ € A;, whereA;, BY, and BY are will provide the control inpub* € V that guarantees the best
matrices of appropriate dimensiof, is a constant vector, (Iowest) valuel* for J,, (v) over all disturbance realizations

and.4; is a polyhedron of dimension+m.,+m., described €xcept for a set of probability at moswhile satisfying the
by state constraints.

‘ o ‘ It is worth noticing that the violation probability plays

A = {(x,v,w) D [Lig Li, Liy] [ o' w']) < Li} , (2) the role of a tuning knob trading robustness for performance

. _ _ i . in that if we increase we improve performance, but decrease
o+ Lays Lgy, @ndLy define the H-representation of ihe guarantees that such a performance and also the state
A; as an intersection of half-spaces, [18f 1,2,...,s. The  congiraints are satisfied. Depending on the application at
collection{A};_, constitutes golyhedral subdivision of the hand, ¢ can be appropriately set so as to get the desired
spaceR™ x R™v x R™v, i.e, Ui_jA; = R" X R™ X R™  compromise and set the risk at some acceptable value.
and the intersectiood; N A;, i # j, is either empty or @ = note that not all values for may be admissible for
common proper face of both polyhedra. Polyhedrdnis o chance-constrained problem (3) to be feasible. This is
calledmode ¢, and modei is active at timek if (k) € Ai. o jnstance the case when has an unbounded support,
A numerical tegt for che_ckm_g if the resulting PWA SysttMynd the state is confined to some compact kgtthat is
IS weII. posed .(|ts evolution is aIV\{ays well .d_eflned) can b(?1ot compatible with the available actuation effort and the
found in [8]. Since the modes define a partition of the stat€s, arienced extent of the disturbanceln the following we
input-disturbance space, there is only one mode active alggy|| neglect this issue and assume feasibility. The istece
time. ) o . . reader can refer to [19] for an effective solution to theestat

Our goal is designing the control input vector over a timgeaipjlity issue, which could be adopted and captured in
horizon of finite lengthl™: v = [v(0)" v(1)" ... o(T=1)'I"€ " gyr framework, but that we do not take into account here to
R™ T s0 as to minimize the linear cost function simplify the presentation of our approach.

T-1

J(v) =Y ((k+ Dk + 1)+, (k)o(k),  (@3) I1l. PROBLEM SOLUTION
k=0

whereL?

ax’

The chance-constrained optimization program (5) is gener-
ally hard to solve except for a few cases like when probabilit
P, is Gaussian, [20], [21]. It is indeed even to solve in a
data-driven framework, wher&,, is not known explicitly
but only indirectly through some independent extractions
Xy ={zx €R": H'z < H}}, 4 w®,w?, . . . wl) of w (scenarios).

when the system is initialized at(0) = z, subject to the
actuation constraints on the inputk) € [v,,vx] C R™,
and (affine) state constraints of the formik) € X, k =
1,2,...,T, where X}, is a polytopic set described by



~

Following [10], we then propose a two step data-based =

/! /
solution, where we first determine a compact ¥#t for (o (b + Dk +1) +c, (Jo(k)) < £ ©)
vector w such thatP,,{w € W} > 1 — ¢, and we then k=0 K
solve the following robust optimization problem Hye(k) < Hy, k=1,2,...T, (10)
. xz(k +1) = Ajz(k) + Bfv(k) + B w(k) + fi,
min ¢ (6) ;
veEV, leL for [x’(k) v (k) w’(k)] cAi,k=0,...,T -1,
subject to: w e W.

< = o . S .
T () S EA (k) € X, k=1,2...T, weW, According to (1) initialized withz(0) = =0, the statex(k)

L being the compact interval whefecan be confined given can be expressed as follows:
that the system (1) is initialized at) and subject to compact

k—1 k—1 k—1

inputsw € W andv € V. _ v .
Given that probabilityP,, is known only indirectly, x(k)_H)Al(J)xo—i_j:O hzlllAl(h) Biggyeh)

through the collected scenarios, the first step is addressed

via randomization and an appropriate convex problem for- kol w _

mulation so as to guarantee tig, {w € W} > 1 — e with + H Aiwy | Biiyw(i) | + fiy | »

a certain (high) confidence — 3, 8 € (0,1). The solution h=j+1

to the robust program (6), then, will inherit the probaliiis where i(j) € {1,...,s} is the index of the mode ac-

guarantees oWV, i.e, it will be feasible for the original tive at time j. The ordered collection of modes =

chance-constrained program (5) with confidehce §. {i(0),i(1),...,i(k=1)} € {1,..., s}’C that are active dur-

Note that we adopt a two step approach since the scenaiig the system evolution up to time is called switching
guarantees do not hold for the randomized version of theequence of the PWA system in the horizojd, k].
original chance-constrained problem (5), because cantdra A solution to (8) exists if we can findo,¢) € V x L
insideP,, are not convex in the optimization variabbedue such that the set of states that the system can reach within
to the PWA dynamics of the system. the interval[l, T'] when its control inpub is set equal taw
We next explain in detail how the two steps are performeds contained within the specified setg, £ = 1,2...,7 and
J(®) < £, when the disturbance ranges inyy. Once we
Sep 1: bounding uncertainty via scenario optimization have characterized such feasible valgést), we can then
pick up one with the minimum value df thus solving the
robust optimization problem (8).
W = [w,w], The question is then how we shall characterize the feasi-
_ , o . ,  ble values(w,¢). We next suggest a geometric perspective
with w = [wy wy .. Qle]. andw = [wo w; ... wle] *  resting on a set inclusion condition. To this purpose we first
The problem of determininfw, w] based on the available htroduce some compact notations.

scenarios{w "}~ | is addressed by solving the following Setm = m., + my, and define the input vectar € R™:
scenario optimization program

Set)V is chosen to be a box

. u = [w',v'}l. (12)
%ngz @ — w,|| (7)  Fix a switching sequencé; = {ig, i1,...,i7_1}. The
= h=0 evolution of the state of system (1) on the time intefal T')

subject to:

w € ], i =12, N X = [z(0) 2(1) =2) ... z(D)],

] - ) _starting from the initial condition:(0) = x¢ and subject to
The following proposition then can be directly derivedipqo input sequence
from [10, Section III]. ,
Proposition 1: Let (w*,w*) be the solution to (7). IV U=[u0) u) wu@) ... oT-17], (@12
satisfies(1 + (N — 1)¢) (1 — &)~ ' < B, whereé = & and
B = £, then, it holds thaP.,, {w € [w*,@*|} > 1 —¢, with
confidence larger than or equal to- 3. X =BWy + GWFI) 4 AU g, (13)

can be written as:

. . . o where we set
Sep 2: control input design via robust optimization

0 0 0 0
We start by better formulating problem (6), making the B
) - o i 0 0 0
constraints that need to be robustly satisfied explicit as a
function of state and input variables: B = Ai Biy Bi, 0 0
min / (8) : :
veEVLEL T_1 T_1
subject to: L= A Bi, [l—o Ay Biy - Bip |



with B; = [BY BY],

[ 0 0 0 0]
I 0 0
Ga)— Aiy 1 0 :
T-1 T—1
_szl A Hj:2 Ai 1]
[ fio | [ I |
fil AiU
I — | fi, A= Aiy Aiy
_fiT—l_ _H?gol Aij_

The constraints on the state-control input-disturbandes pa
to the modes activation in the switching sequence can be Sp, = {(U,¢) eU x £ : S [U' 1] < Sffl)}.

written in the following compact form:

LWX + LU < L™, (14)
where
(L, 0 Lig,
LU — LU —
N L& 0 N L
L = [0 i, ...Lff*l'}/,

with L}, = [Li, Li,]. By plugging (13) in (14) we get:
Ll(lil)(A(Iz)xo + B 4 G_(IL)F(IL)) 4 Lgﬁ)U < Ll()ll)’

which becomes:

MU <M, (15)

where M = L{VBU) + LY and M{" = L") -
LEzIzZ)A(IZ)Io — L((IQ)G(IZ)F(IZ)_

From now on, we will say that system (1) evolvas

The linear constraints in (9) and (10) can be rewritten as:

Co(AM gy + BUY + GU R 4 O, U < ¢ .
H, (Ao + BOU + GU W) < H, (17)
where C, = [0 (1) d(2) ...d(T), C., =
[0¢,(0) 0 (1) ... 0 &y(T —1)],
0 H!
I
H, = |’ . . Hy=[m =]
0 HT

a

We can rewrite the inequalities (17) in the compact form:
s g < s\, (18)

where S{™) and Sl(fl) are suitably defined matrices, and
introduce thespec-set

(19)

If A; NSp; is not empty, its elements are input sequences
{u(0), u(1),...w(T —1)} and values for/ that make the
state of the system satisfies the constraints (9) and (10¢ whi
keeping its evolution in the switching sequenige

Let Z = (0,¢) € V x L, and denote witHI; (A;) and
I1:(Sp;) the slices of the reach-sed; and spec-seSp,
obtained by setting = ¢ and fixing in U (see (11) and
(12)) the sequencév(k)};_, to the valuei € V. Problem
(8) is then feasible if there exist some valiie= {v(k)};
for the control input and some valuefor the upper bound
£ on the cost, such that the following condition holds:

:(A;) C:(Sp;) VI €SS (20)

This can be formulated as bilinear feasibility test, [22],
which is hard to be solved. Here we head for an approximate
MILP solution by over-approximating; by an outer boxB,
so as to provide a sufficient condition for (20) to hal,

I1:(B;) C 11:(Sp) = 11:(A;) C IIx(Spr).  (21)

the switching sequence I, if equation (15) is satisfied. We B, will be chosen as theninimum volume outer box ap-

also define thereach-set associated with; in the enlarged
variables spac#f x L as follows

Al = {(Uvé) S u X E . Mz(zll)U S Mff”},

whered = [u, @] with u = [w), vf ...
w=[w, Ty ... Wp_y Up_q).

/ / /
wr_y vr_,]" and

Let SSdenote the set of all possible switching sequencegl =1

Then, we have that
U Aa=uxc,

I,€SS

(16)

since any value foi(k) is admissible at each time stép

proximation of A;. Note that the over-approximatioris;
andB; of A; and.A; associated to the switching sequences
I; # I; may partly overlap. In this case, the approach still
remains valid though it is clearly conservative. The upper
and lower limitsb") and b/ of B, can be computed via
LP as explained in [23] anB; can be expressed as

b1 B = (U, 0) eU x £: BW U < B
with BYY = 71, —lmry1]” and Bl()m
I —p)Y ) wherel,, 41 is the identity matrix of

mT + 1 dimension.

The setll;(B,;) obtained by slicing3; in correspondence

given that there always exists an active mode correspondigg 5 can be written as:

to that input value as dictated by the polyhedral subdivisio

defining the PWA dynamics.

I1:(B)) = {Uw EW: [Bgfﬂ}w U, < B — [Bgm]vz}



B {[bgﬂ B if b e [l_;ffl),%m} U, 5] that  belongs to the bodB; can be expressed

otherwis as
0 & To5 < T, (26)
where we denote withl/,, the column vector obtained , 1) 0y
by extracting fromU the elements that correspond to thewhere T, = [l;n, 741, —lm,741] and 7§ = "
disturbance{w(k)}} -, and, for ease of notation, we useb(m] We n0W|ntr0duc@(mvT+1) b|nary vanablesvj 2
b and b for the vectors obtained extracting the scalag = {1,--.,2(m,T +1)}, one per each row of (26), defined
elements ob!") andb(") that correspond tduw(k)} .-} by:
If the sliced boxI1;(B;) is non-empty, we next prove that o) — 1 o T, %< TZ()IL.)' (27)
a value forz that makes the set-containment condition (21) _ / o 7 _
hold can be found via a linear feasibility test. Equation (27) can be translated via thig-M technique (see
Proposition 2: Let II:(B;) # 0. Then, condition [24]) into the following linear inequalities :
I1:(B;) C I1;(Sp,) is satisfied if and only if: T, % — T(Iz) + f/j(fz)o.gfz) < Vj(lz)
3ze bl 600): (8] 28 LW, (22) Tagz—l-T(m +v e <o
where wheref/j(ll) andKj ) are given by
1 - 1 _
o= L] (g [0] [0 ). g e

Proof: ConditionII;(B;) C I1;(Sp;) is equivalent to:

V" = min T,z -1

~ I T
[Sgll)LUw + {SEIZ)LZ <s{, wu, e bV, bV, and can be computed by using the same technique as in
which holds if and only if: Proposition 2. In order to make the constraint (22) triyiall
satisfied whenz ¢ b0, 5Y], we can now exploit the
Sffl)} Uw + [Sflll)} z<s!™  (23) binary variables defined in (27) and write the following
v ? constraint:
where the max operator is meant row-wise. Through the
following change of variable:

max |:
Uwent, B0

{ mL z-8 4 L1 <7001, 1y — 2000,

(28)
Uw = Hu + Qa . . . )
. wherecs(") is a column vector obtained by stacking @jl“
whereuy = % (bgul) + l_agl)) and variables,15,,, 741y is @ column vector o2(m, T +1) ones,
) ) and each columfiz]’ of Z is defined by:
— |2 (pU) _pln) 2 (pU) _ pn) )
Qees [ 5 (B0 =80, 5 (B — i) )} ’ Z)7 = max [SUV).5 - S 4 £, (29)
problem (23) is rewritten as: where the max operator is to be interpreted row-wise. Again,
) ) ] 5<s 11) (29) can be tackled by means of the same technique used
IQneag {S“ L;Q—F {S“ LUMU * {S“ } c= (24) in Pr?p)osition 2. Equation (28) becomes tight onlyalf
I . .
The worst case of the term on the left hand side of (24) &€ & Vot :va = -(,12)(77}7&7;4- 1), are equal to 1, which is
found on a vertex of, and its value is given by: equivalent toz € b, b2"'] (see (27)).
- [s“ﬂ} B H IZ)} ‘ plI) — v (25) Finally, we can setup the following MILP problem:
QeQ w w 2 _ min l (30)
Plugging (25) in (24) concludes the proof. [ | Z:(’_”Z)EVXL’ (o't }ress
The feasibility test (22) applies to those switching seSubject to:
querr:ctis trs[u?g )thaﬂ (th) is (ngt) ecm%ty(SFO)r th?se ltlJneST Ty + Ve <V =1 2(m, T+ 1)
satisfied. To account for this, we will next encode the™ Tadz*’Tb,.;' +sz 07" <0, j=1....2(m,T +1)
condition [ngL 24+ 2l <8l £ 4 g1y 0
II:(B)) C I1:(Spy) < VI, € SS
[Sz(zll)]z Z< Sz(;m — LW, ze [b,(zll)7 Bgl)] Note that the obtained solution is suboptimal since an over-
trivially satisfied ¢ [b(ll) l;glz)] approximation of the reach-sets has been adopted. However,
= if feasible, problem (30) returns a control input sequence
within a mixed integer linear feasibility test. 0* and an upper bound* on the cost that are feasible

Fix a switching sequencel;: the constraintZ €  for the original problem (8), thus entailing that enforces



the state constraints robustly over the ¥®t of disturbance
realizations of predefined probability- ¢, despite of the fact
that different disturbance realizations may activate gedéht

switching sequence.

Supposedly, problem (30) has to be solved for the admisl®)
sible switching sequences only. In practice, there is na@nee
of predetermining which sequences are admissible (which
can be done via MILP as shown in [14]). Indeed, a non-
admissible switching sequenégis automatically discarded
when the computation of the outer box 4f is infeasible.

The complexity of the MILP problem (30) is basically
dictated by the number of involved integer variables. Thisg
number grows exponentially with the time horizon lenth
since the number of switching sequences grows exponglntiall[g]
with time. If we fix T' and look at the dependence in the
number of switching sequences, then for each switching
sequence we have that, in the worst caden,T + 1) 10]
binary variables for each box are needed. In practice thEs
number is always much smaller, since each binary variable is
associated with the boundary of a box and it is often the ca
that a boundary is shared by multiple boxes. Note that t
computational complexity does not depend on the state space
dimension. This feature makes our approach particularly?!
attractive for problems with a large state space, yet with a
limited number of modes. [13]

(4]

(7]

)
e

IV. CONCLUSIONS [14]

In this paper, we presented a data-driven approach to
optimal control input design for a discrete time PWA system
affected by a possibly unbounded stochastic disturbanges)
subject to state and actuation constraints.

We adopted a chance-constrained approach for the optin%ﬁ]
control problem formulation and propose a solution resting
on the integration of the scenario approach to stochas?'lcn
optimization and robust control for PWA systems.

Scalability issues of the resulting MILP problem could
be addressed by applying model reduction techniques or t
joint use of classical MILP solvers and techniques borrowe
from theoretical computer science, like Boolean satiditgbi [19]
problem solvers (SAT), so as to improve the performance of
Branch & Bound algorithms for MILP programs (see [25]).

Another interesting direction of research that we are
currently pursuing is the extension of the approach to tl—téol
class of nonlinear systems by suitably approximating their
dynamics with a PWA one and accounting for the error as a
bounded mode-dependent disturbance.
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