

BEST Control System

BEST Robotic, Inc.

- New Cortex firmware
- VEXnet Key 2.0
 - White in color (black ones are obsolete)
 - VEXnet Key 2.0 keys and new firmware NOT COMPATIBLE with old keys and old firmware. Can't mix and match!
- Small motor has better gearbox, larger shaft
 - Small drive pulley now 1/4" instead of 3/16"
 - Again, can't mix and match with older kits
 - BE SURE GEARBOX SCREWS ARE TIGHT
- No 9-volt battery back-up battery connector

Servos

Servo Extensions

Servo Horns

Joystick Return Kit

AAA Battery Charger

Analog

Digital i/o

WiFi key USB/Tether Serial

motors/ servos

BEST

Servo Power Adaptor

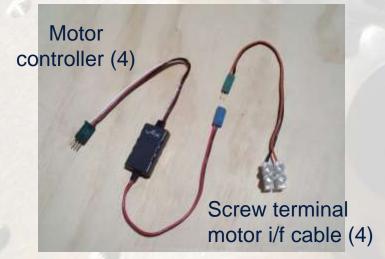
Servo Mounting H/W (optional)

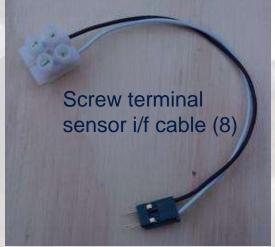
(16)

USB A-A cable

Drive components

7.2V Battery charger




Battery adapter

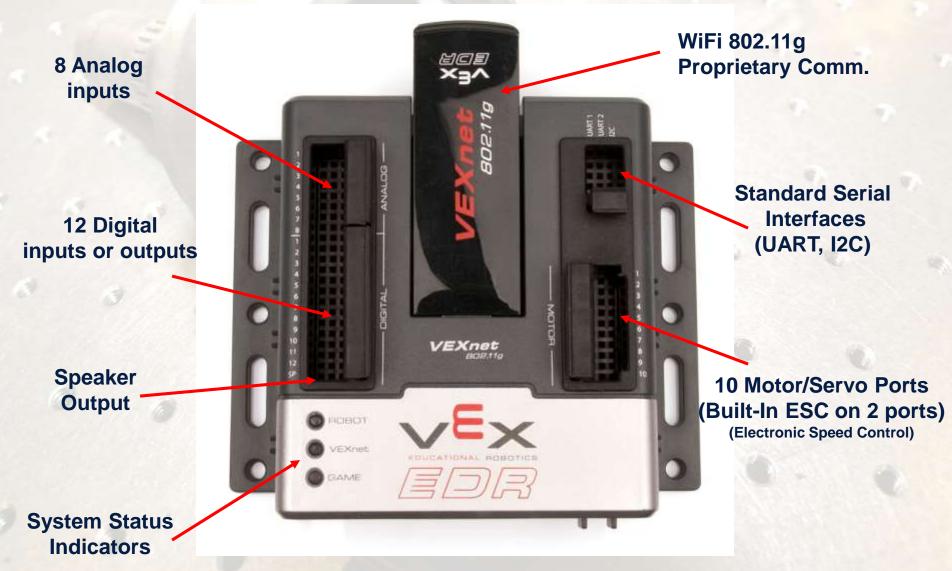
7.2V Battery

VEXnet Control System

- VEX Cortex microcontroller
- Dual ARM Cortex CPUs
- Programmable
- WiFi communications

Gaming style controller

Joysticks, buttons, accelerometers



Remove screw to access batteries

VEXnet Cortex M3 Controller

VEXnet Joystick

◆"Playstation" game-style controller

Plug-in USB/ WiFi Key

4 buttons on front-side

Programming Interface

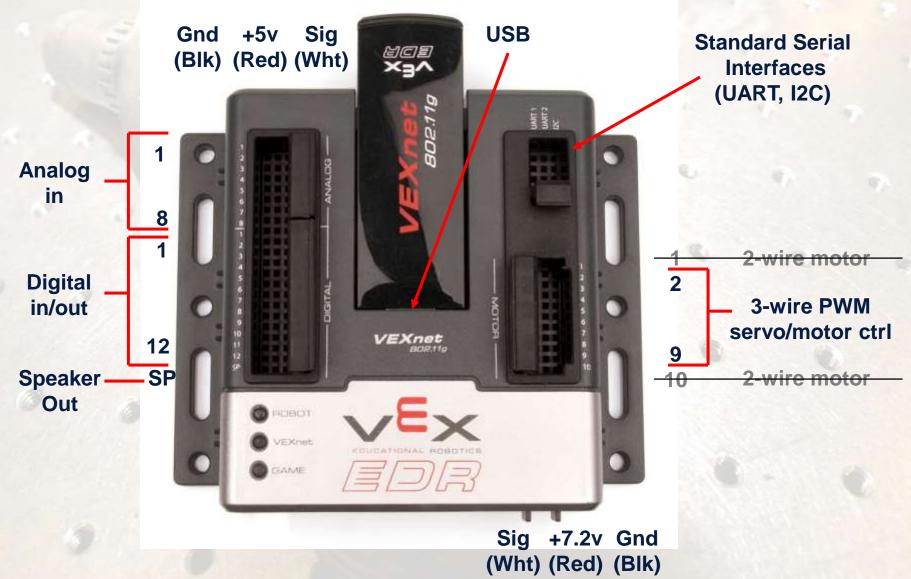
8 buttons on top

2 XY analog joysticks

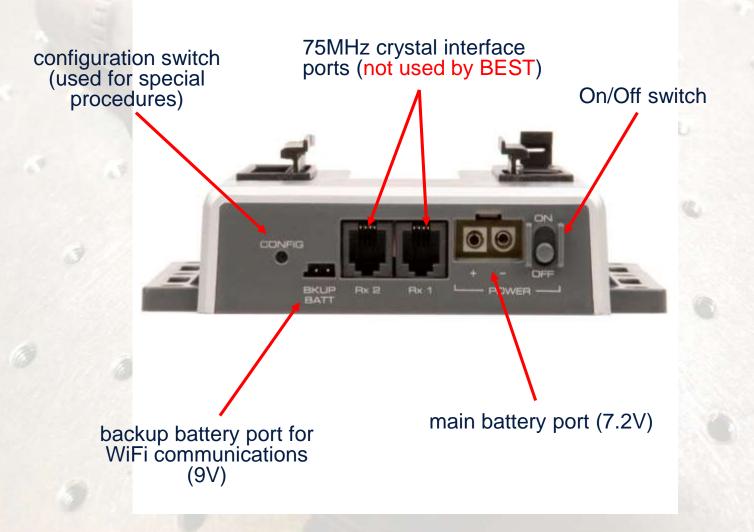
Power switch

6 AAA rechargeable batteries

2 Axis Accelerometer (X Tilt and Y Tilt)


System Features

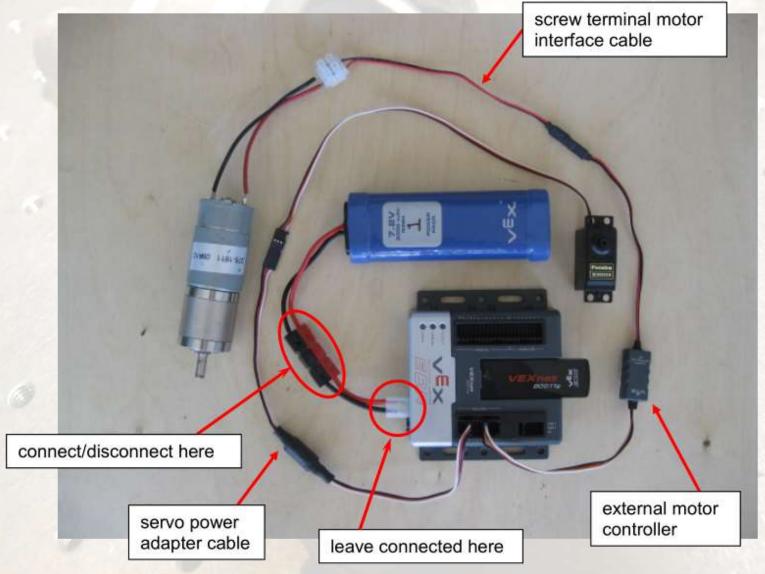
- Wireless communication using 802.11g
- Two 2-wire proportional motor control outputs (not used by BEST)
- Eight 3-wire PWM servo/motor outputs
- 12 discrete digital inputs/outputs + 1 speaker
- Wireless or direct USB port for program download
- Onboard power switch
- Built-in resettable fuse for overcurrent situations
- Powered by a single 7.2 volt RC hobby battery
- 9-volt backup battery for WiFi


VEX Cortex Connectors

VEX Cortex Connectors

VEX Cortex Pinouts

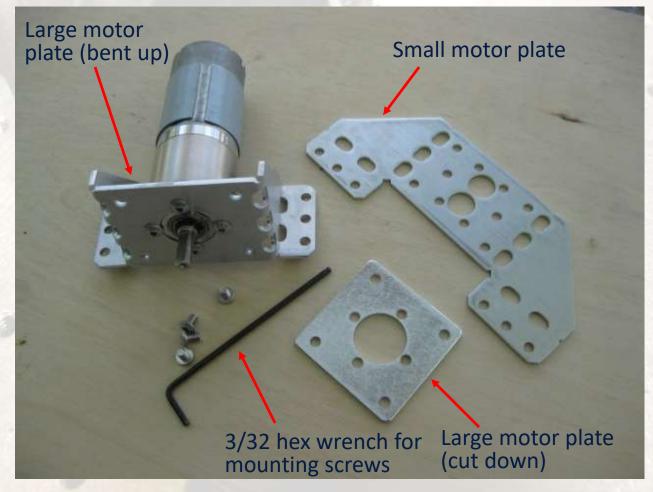
- Ground
- + 5V
- Signal/Control
- + Battery Power
- + Battery Power (for + control input)
- + Battery Power (for control input)



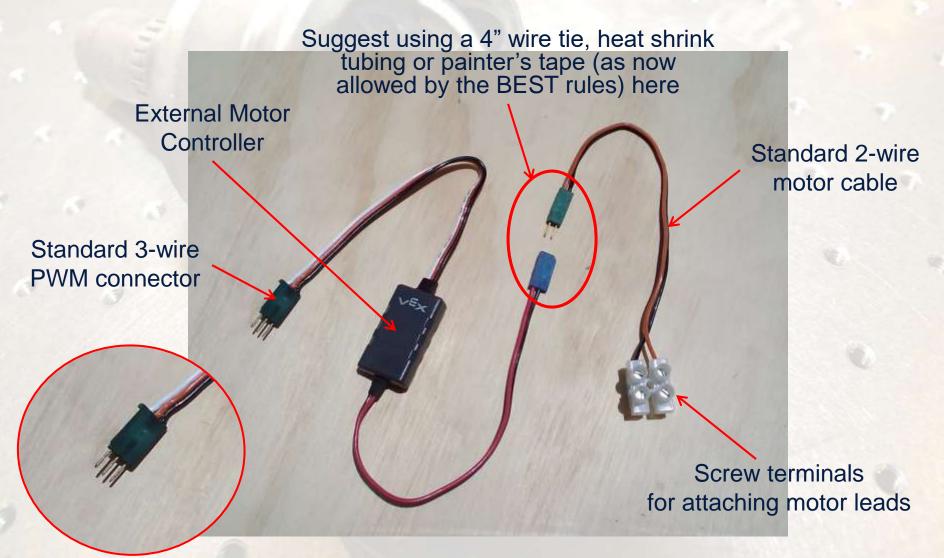
- Use of internal motor controllers (motor ports 1 and 10) is not allowed
- External motor controller(s)
 - connect via 3-wire external motor controller plus the 2-wire screw terminal cable
 - use motor ports 2 thru 9 only

Example Hookup

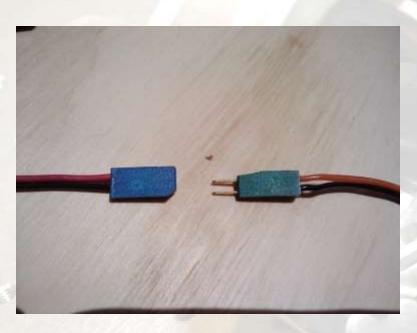
- Servo/motor ports are divided into two banks
 - Bank1 = Ports 1-5 (2-5 for BEST)
 - Bank2 = Ports 6-10 (6-9 for BEST)
- Each bank can support a max of 4 Amps of current
 - BEST large motor stall current can reach 3.5 Amps.
- For power reasons, spread your motors so that
 - no more than 2 motors are plugged into ports 2-5, and
 - no more than 2 motors are plugged into ports 6-9.
- You risk overcurrent/shutdown of the processor
- Sheet metal shield around the large motors IS needed and should not be removed


- Solder wires to motor terminals or with the optional quickdisconnect (spade) terminals
- Polarity is NOT marked on motors: positive(+), negative(-)

 Wiring (and programming) will determine clockwise or counter clockwise rotation for positive stick movement

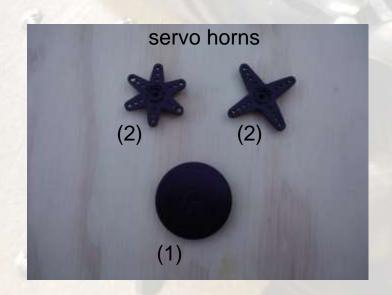


 Motors can be mounted with VEX Motor Mounting Kit provided in the consumables kit


3-Wire Motor Connection

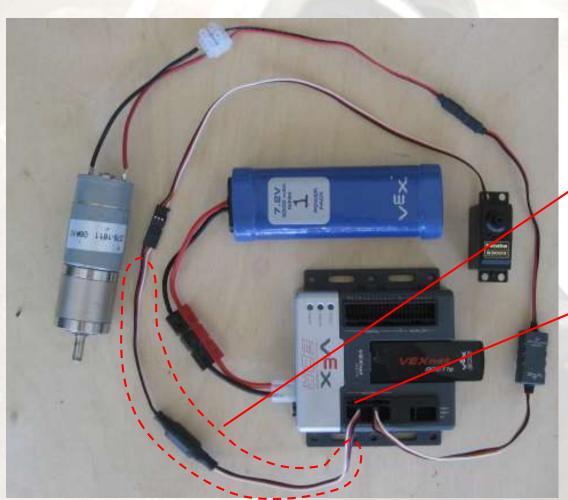
3-Wire Motor Connection

- Connectors are not keyed
- Connect red to red, black to black or reverse to change the motor response

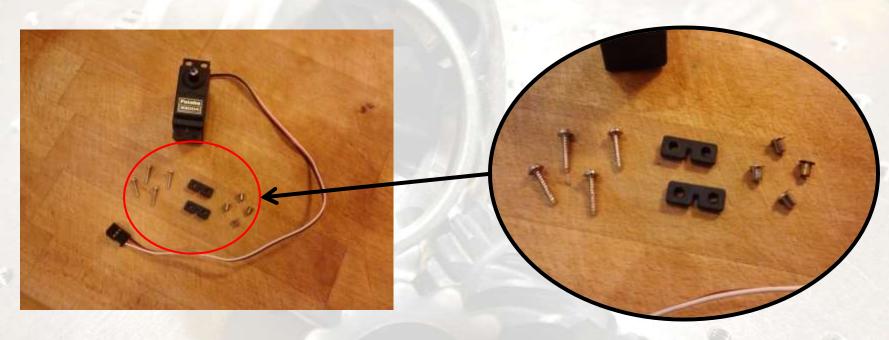


Servos

Servo Power Adaptors


- Futaba S3003 or S3004 series
- Maximum 120 degree rotation (+60, -60)
- Connection to Cortex controller
 - via 3-wire PWM + Servo Power Adaptor
 - use motor ports 2 thru 9 only
- Servo horns may be modified

Connecting a Servo



- Connect a servo (or servo extension cable) to the
 Servo Power Adaptor cable
- Insert a Servo Power Adaptor cable into a motor port (2 through 9)

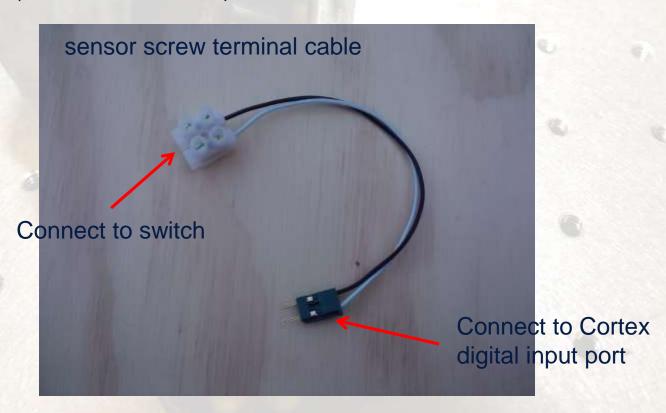
Servo Mounting with Optional Hardware

- Futaba 3003/3004 Servos
 - 4 per Kit
 - Mounting Hardware for each
 - To <u>eliminate damage</u> to mounting holes

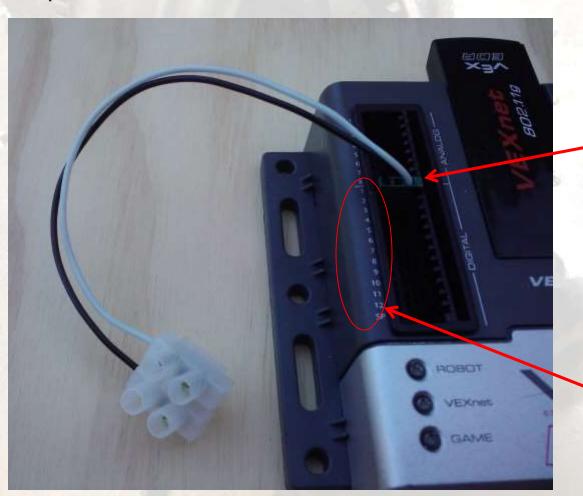
- Servo Mounting Hardware
 - Rubber grommet (2)
 - Brass spacer (4)
 - Mounting screw (4)

Note: There are 16 of each screw, spacer, grommet in the Return Kit for BEST Hubs that provide servo mounting hardware.

Servo Mounting with Optional Hardware

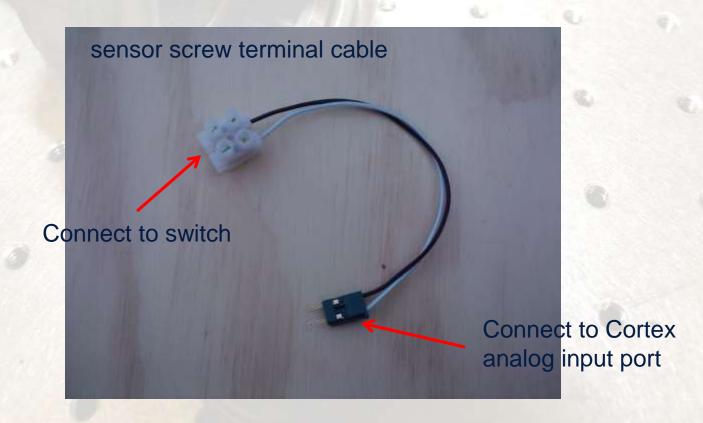


Digital Input Connections


- Use for limit switches, microswitches
- Connect to Cortex digital inputs using 2-wire sensor screw terminal cables (white/black wires)

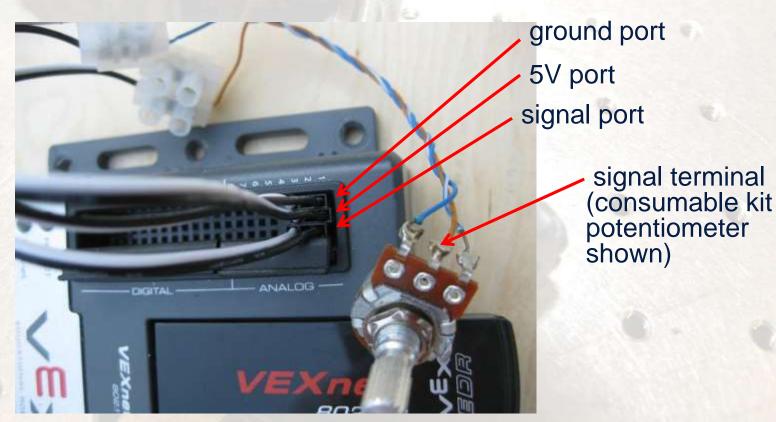
Digital Input Connections

- must program digital port for proper direction (input)
- open = reads as '1'; closed = reads as '0'


sensor cable connector is **keyed**

use digital ports
1 thru 12

Analog Input Connections


- Use for potentiometers
- Connect to Cortex digital inputs using three of the 2-wire sensor screw terminal cables (white/black wires)
- Sensor cables must be plugged into the Cortex "sideways"

Analog Input Connections

- signal terminal of the potentiometer must be connected to the analog input signal port
- program will read a value of about zero with 0V applied (grounded) at the signal port and the maximum value (program dependent) when 5V is applied at the signal port

Re-Syncing (Pairing) VEXnet

Out of the Box Configuration

- Allows a team to hook up the Cortex and have it work without having to program it.
- Referred to as the "BEST default" program.
- This is NOT the only configuration for the Cortex!

Good for initial checkout, but <u>we want teams</u> to load a <u>unique configuration</u>.

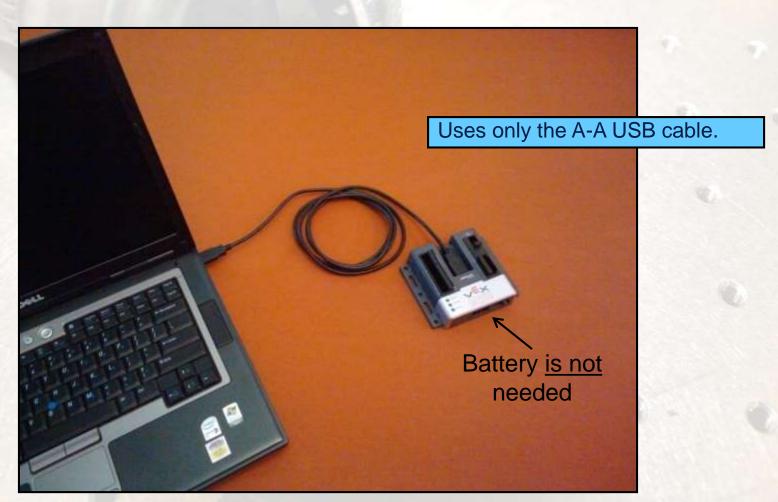
BEST Default Program

Motor/Servo Port	Joystick Channel	Motor Limits	
		Positive Direction	Negative Direction
Motor 2 (pair opposite of Motor 9)	Stick 3	None	None
Motor 3	Stick 4	None	None
Motor 4 (pair opposite of Motor 7)	Button 7 and 8 Up/Down/Left/Right	None	None
Motor 5	Stick 1	Digital Input 1	Digital Input 2
Motor 6	Stick 2	Analog Input 1	Analog Input 1
Motor 7 (pair opposite of Motor 4)	Button 7 and 8 Up/Down/Left/Right	None	None
Motor 8	Button 6 Up	None	None
Motor 9 (pair opposite of Motor 2)	Stick 3	None	None

Three BEST Programming Options BEST

- easyCv6: http://www.intelitekdownloads.com/easyCV6
 - A block programming environment (drag-and-drop elements)
 - Use link above, then select "Download easyCV6 Version 6.0.3.0"
 - Install the SW, select "Run as Administrator" and enter license key (the hub will provide your team with a valid key, good for 150 days)
- RobotC: https://www.vexrobotics.com/robotc-vexedr-vexiq.html
 - Textual programming in C, with single-step debugging (great!)
 - Use link above to create an account and log in
 - Go to https://www.vexrobotics.com/downloadable/customer/products/ and select "ROBOTC for Vex Robotics 4.x download" (license doesn't expire)
- MathWorks Simulink: http://www.mathworks.com/academia/best-robotics/
 - A graphical programming/modeling environment with simulation capability (visualize what your program will do before you download it to the Cortex)
 - Simulink training video available on Auburn BEST website, too

BEST Programming Options

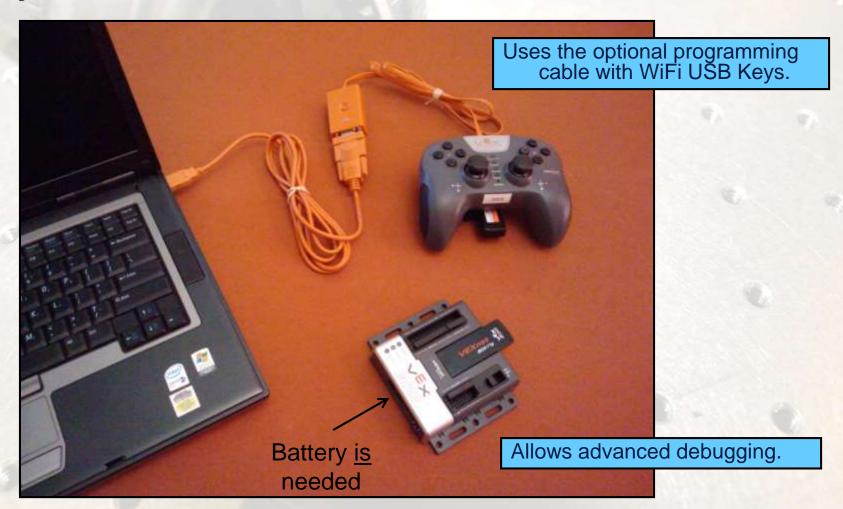


- Three different programming environments available
 - easyCv6 http://www.intelitekdownloads.com/easyCV6
 - RobotC http://www.robotc.net/download/cortex
 - MathWorks Simulink http://www.mathworks.com/academia/best-robotics/
 (Simulink training video available on Auburn BEST website, too)
- easyC is a block programming environment (drag and drop programming elements)
- RobotC programs in C with a text editor, but it has runtime debugging (can step through program line by line and see what the results are)
- Simulink is graphical programming/modeling environment with simulation capability (see what your program will do before you download it to the Cortex)

Downloading a Program

Option 1: Direct USB Download

Downloading a Program


Option 2: Tethered Download

Downloading a Program

Option 3: Wireless Download

Testing Tips

- Ensure your robot is 'safe' to operate:
 - Can't move or fall off table (use a jack-stand)
 - All team members clear of moving parts
- Connect either WiFi keys or tether cable between the joystick and the Cortex controller.
- Make sure Cortex switch is in OFF position.
- Attach a charged battery.
- Turn on joystick (if not using tether).
- Turn Cortex switch to on position.
- ◆ For WiFi comm, link should establish in ~10 sec
- Test robot operations with transmitter.

LED Status Lights

- Green battery good charge
- Yellow battery dying
- Red battery dead

- Green VEXnet comm. established
- Yellow VEXnet searching
- Lights on the controller and the joystick are the same

Team Tips

- Tin motor wires with solder before attaching to screw terminals since frayed stranded wires can cause a short or use the optional quick-disconnect (spade) terminals.
- Do NOT solder wires to Cortex connectors!
- Sensor cables, servo power adapter cables and external motor controllers are all keyed in correct orientation; insert and remove carefully to avoid destroying connectors.
- Tighten screws on motor and sensor connector cables so that wires are not loose and do not pull out.
- Mount Cortex to robot using #8 screws through holes provided; be careful not to over tighten.
- Avoid "hot insertion" of USB Keys.
- You may operate tethered by removing the USB WiFi key and connecting a USB A-A cable between joystick and Cortex.

Joystick Calibration

- If the motors hum or creep (sticks not returning to zero), the joystick may need to be recalibrated
- Calibration procedure (as extracted from the easyC help file)
- 1) The Joystick must be "Linked" to the Cortex Microcontroller using the VEXnet Keys.
- 2) Hold the "6U" Back Switch depressed.
- 3) While the "6U" Back Switch is depressed, use a small Allen Wrench (1/16" or smaller) or similar small straight tool to depress and hold the CONFIG Switch.
- 4) Hold both Switches depressed until you see the Joystick LED Flash RED and GREEN you can now release both Switches.
 - a. There is a 10 second time limit to complete the following steps 5 and 6.
- 5) Now move both Joystick Pots to the maximum position desired in all 4 directions Up, Back, Left, and Right.
 - a. If a movement is not detected in all 4 directions, a timeout will occur after about 10 seconds and the Cal Mode will be discontinued and the VEXnet LED will briefly Flash Red.
 - b. The Joystick LED will continue to Flash RED and GREEN during the calibration process.
- 6) After movement is detected in all 4 directions, the Joystick LED will be ON and Solid GREEN.
 - a. To "Save" the Calibration, depress and release the "8U" Top Switch Button.
 - b. If the calibration is accepted and Saved, the Joystick LED will start Flashing Fast GREEN for a few seconds.
 - c. If the Calibration is not Saved, a timeout will occur after about 10 seconds and the Cal Mode will be discontinued and the VEXnet LED will briefly Flash Red.
 - d. To cancel a calibration, depress and release the "7U" Top Switch Button. The Cal Mode will be discontinued and the VEXnet LED will briefly Flash Red.
 - e. If the Cal Mode is discontinued or saved, the Joystick LEDs will resume their normal function after the VEXnet LED briefly Flashes.

Where to find help?

- Music City Best game wiki (https://cps-vo.org/group/MCBEST/wiki)
 - Lots of relevant info! (will be live by kick-off day)
- Online resources/documentation (BRI Site)
 - http://best.eng.auburn.edu/b_resources1.php
- BEST Public Message Board (http://forums.bestinc.org)
 - Must register for login account
 - Share ideas, resolve issues, ...
- Official Q&A "Control System" Category
 - http://best.eng.auburn.edu/cgi-bin/bestqna.pl
 - Use "Official Q&A" page during contest for "rules specific" questions
 - e.g. "Is this legal?"
- VEX Forum
 - http://www.vexforum.com/forum.php
 - Technical questions about VEX equipment
 - easyC and RobotC dedicated forums included here