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Abstract—We deal with decision making in a large-scale multi-
agent system, where each agent aims at minimizing a local
cost function subject to local constraints, and the local decision
variables of all agents are coupled through a global constraint.
We consider a cooperative framework where the multi-agent
decision problem is formulated as a constrained optimization
program with the sum of the local costs as global cost to be
minimized with respect to the local decision variables of all
agents, subject to both local and global constraints. We focus on a
non-convex linear set-up where all costs and constraints are linear
but local decision variables are discrete or include a discrete
component, and propose a distributed iterative scheme based on
dual decomposition and consensus to solve the resulting Mixed
Integer Linear Program (MILP). Our approach extends recent
results in the literature to a distributed set-up with a time-varying
communication network and allows to: reduce the computational
and communication effort, achieve resilience to communication
failures, and also preserve privacy of local information. The
approach is demonstrated on a numerical example of optimal
charging of plug-in electric vehicles.

Index Terms—Optimization algorithms, distributed control,
agents-based systems

I. INTRODUCTION

WE consider a system composed of m agents, where
each agent i, i = 1, . . . ,m, is optimizing its local

(scalar) cost function

Ji(xi) = c>i xi

with respect to its decision vector xi of dimension ni, which
has its first nc,i components continuous and the remaining
nd,i = ni−nc,i ones discrete. The decision vector xi is subject
to the following constraints

Dixi ≤ di,
m∑
i=1

Aixi ≤ b,

where di and b are vectors of dimension ki and p, respec-
tively, matrices Di and Ai have appropriate dimensions, and
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inequalities have to be interpreted component-wise. The first
constraint is local, while the second one is global since it
involves the decision variables of all the agents, which makes
the decision making problem coupled.

We assume that agents act cooperatively and they hence
jointly aim at solving the resulting Mixed Integer Linear
Program (MILP):

min
x1,...,xm

m∑
i=1

Ji(xi) =

m∑
i=1

c>i xi (P)

subject to:
m∑
i=1

Aixi ≤ b,

xi ∈ Xi, i = 1, . . . ,m,

where for each agent i, i = 1, . . . ,m, we set

Xi = {xi ∈ Rnc,i × Znd,i : Dixi ≤ di}, (1)

and by Rnc,i × Znd,i we imply a vector space involving both
continuous and discrete components.

When the number of agents is large, solving the constrained
optimization problem P centrally is hard, mainly due to the
presence of discrete decision variables. Also, agents may not
be willing to disclose their private information coded in their
local cost and constraint.

Methods for efficiently solving problem P by exploiting
its almost-separable structure and decomposing it into m
(smaller) problems solved in parallel by the agents under
the coordination of a central unit are proposed in [1], [2].
Both [1], [2] adopt a dualization approach with tightening
of the coupling constraint to determine a feasible solution
and provide a bound on the duality gap. The introduction of
an adaptive tightening in [2] allows for the formulation of
an iterative decentralized algorithm with finite-time feasibility
properties and a performance that is not worse than the one
of the asymptotically feasible solution in [1].

Optimal charging of a fleet of electric vehicles is considered
as numerical case study in both papers. Optimization problems
that fit the structure of P can be found in further application
domains, like, e.g., supply chain management [3], portfolio
optimization [4], and energy systems, see e.g. [5], [6]. In all
applications, the agents decisions are implementable in prac-
tice only if they are feasible for the associated optimization
problem P .

In this paper we extend the decentralized algorithm in [2]
to a distributed framework where agents exchange information



only with their neighbors and no central unit is present, while
preserving its finite-time feasibility property and performance
guarantees.

In [2], a central unit is in charge of enforcing the coupling
constraint by iteratively solving the dual problem

max
λ≥0

−λ>(b− ρ) +

m∑
i=1

min
xi∈Xi

(c>i + λ>Ai)xi, (Dρ)

of the tightened LP problem:

min
x1,...,xm

m∑
i=1

c>i xi (PLP,ρ)

subject to:
m∑
i=1

Aixi ≤ b− ρ

xi ∈ conv(Xi), i = 1, . . . ,m,

where conv(Xi) is the convex hull of all points of Xi and the
tightening coefficient ρ ∈ Rp satisfies ρ ≥ 0 and is updated at
every step based on the tentative primal solutions computed
by the agents. More specifically, at each iteration, the central
unit broadcasts a tentative solution for the dual problem, the
agents solve in parallel the (smaller) MILP

xi(λ) ∈ arg min
xi∈vert(Xi)

(c>i + λ>Ai)xi, (2)

based on the broadcasted information, where vert(Xi) denotes
the set of vertices of conv(Xi), and, then, the central unit
collects the contribution of each agent to the joint constraint
so as to update both the tightening coefficient ρ and the dual
variables λ.

Here, we eliminate the need of a central unit by integrat-
ing within the iterative decentralized scheme in [2] a max-
consensus algorithm on the tightening coefficient and the
distributed approach for updating the dual variables proposed
in [7]. In [7] problems of a more general form than P
but without discrete decision variables are addressed. No
tightening is introduced. However, differently from the present
paper where finite time feasibility is proven, in [7] feasibility
is guaranteed only asymptotically.

The rest of the paper is organized as follows. In Section
II the proposed distributed algorithm is described and the
main results are stated together with the relevant assumptions.
Proofs are confined to Section III. An application to electric
vehicles optimal charging is presented in Section IV. Some
concluding remarks are given in Section V.

II. PROPOSED APPROACH

In this section, we introduce the iterative Algorithm 1 for
the distributed computation of a solution to P , and analyze its
properties.

Note that the operators max and min appearing in
steps 10, 11, 12, and 13 of Algorithm 1 with arguments in
Rp are meant to be applied component-wise. Moreover, if
arg minxi∈vert(Xi)(c

>
i + `i(k)>Ai)xi in step 9 is a set of

cardinality larger than 1, then, a deterministic tie-break rule
is applied to choose a value for xi(k + 1). Finally, [ · ]+ in
step 14 denotes the projection operator onto the p-dimensional
non-negative orthant Rp+.

Algorithm 1 Distributed algorithm for solving P
1: Initialization
2: k = 0
3: Set λi(0) = 0, for all i = 1, . . . ,m
4: Set s̄i(0) = −∞, for all i = 1, . . . ,m
5: Set

¯
si(0) = +∞, for all i = 1, . . . ,m

6: Set ρi(0) = 0, for all i = 1, . . . ,m
7: For i = 1, . . . ,m repeat
8: `i(k) =

∑
j∈Ni(k) a

i
j(k)λj(k)

9: xi(k + 1)← arg minxi∈vert(Xi)(c
>
i + `i(k)>Ai)xi

10: %i(k) = maxj∈Ni(k){ρj(k)}
11: s̄i(k + 1) = max{s̄i(k), Aixi(k + 1)}
12:

¯
si(k + 1) = min{

¯
si(k), Aixi(k + 1)}

13: ρi(k + 1) = max{%i(k), p (s̄i(k + 1)−
¯
si(k + 1))}

14: λi(k + 1)

=
[
`i(k) + α(k)

(
Aixi(k + 1)− b−ρi(k+1)

m

)]
+

15: k ← k + 1

Algorithm 1 integrates the distributed approach in [7] for
problems of the form P but without discrete decision variables
within the iterative decentralized scheme in [2], where adaptive
tightening of the joint constraint is used to account for discrete
decision variables and recover feasibility.

Three steps in Algorithm 1 are based on [7]: step 8, in which
agent i constructs an average `i(k) of the dual iterates λj(k)
received from his neighbors j ∈ Ni(k), weighted through
the coefficients aij(k) that satisfy aij(k) > 0 if and only if
agent j sends information to agent i at time k and are used
to define the neighboring set as Ni(k) = {j : aij(k) > 0};
step 9, in which a tentative solution for the primal problem is
computed by fixing the dual variables λ in (2) to `i(k) and
then performing the minimization; and step 14, which involves
a dual subgradient step, based on the tentative primal solution,
with step size equal to α(k), and a projection onto the non-
negative orthant.

Four additional steps are based on [2]: steps 11 and 12,
which iteratively construct worst-case contributions Aixi(k+
1) of agent i to the joint constraint, based on its tentative
primal solution xi(k + 1); step 13, which updates the current
value of the tightening coefficient ρi(k+ 1) based on the new
information of agent i; and step 14, in which the resource
vector b is reduced by the current tightening ρi(k + 1).

Step 10 in Algorithm 1 is the max-consensus update of the
tightening coefficient, in which agent i takes the maximum
among its current tightening coefficient value ρi(k) and those
of its neighbors, i.e., ρj(k), j ∈ Ni(k), j 6= i.

Thanks to steps 8 and 10, no central unit is needed to
coordinate the agents, thus making the decentralized approach
in [2] completely distributed. Note that parameter b appearing
in Algorithm 1 needs to be known to every agent in order to
run the algorithm. However, this is not a restrictive condition,
since b appears in the coupling constraint of problem P ,
which are due to shared resources with limited capacity, and
quantifies the corresponding capacity limits.

As for the initialization of Algorithm 1, λi(0) is set equal
to 0 for all i = 1, . . . ,m, so that `i(0) = 0, i = 1, . . . ,m, and



each agent computes its locally optimal solution at step 9. As
for ρi(0), a sensible choice is to set it to 0 so as not to impose
any a-priori defined tightening of the coupling constraint.

Finally, it is remarkable that the agents do not need to
disclose any private information regarding the primal prob-
lem, but only their tentative Lagrange multipliers λi(k) and
tightening coefficient ρi(k).

A. Statement of the main results

Before stating Theorems 1 and 2 on the feasibility and
performance guarantees of the solution to P computed by
Algorithm 1, we need to introduce some quantities and as-
sumptions, and a preliminary result that is instrumental to the
proof of Theorems 1 and 2.

In order to guarantee that the solution to step 9 in Algo-
rithm 1 is well-defined, we impose the following assumption
on the agents local constraint sets.

Assumption 1 (Boundedness). The sets Xi, i = 1, . . . ,m,
defined in (1) are bounded and non-empty.

For any agent i, i = 1, . . . ,m, and k ≥ 0, we introduce the
following quantities:

yi(k) = max
j∈Ni(k)

{γj(k)} (3)

γi(k + 1) (4)

= max
{
yi(k), p

(
max
r≤k+1

c>i xi(r)− min
r≤k+1

c>i xi(r)
)}
,

where {xi(r)}r≥1 are the tentative primal solutions generated
at step 9 and γi(0) = 0.

The following proposition states that after a finite number
of iterations the agents reach consensus on the value of the
tightening coefficient and of γi(k) defined in (3)-(4).

Proposition 1 (Max-consensus). Under Assumption 1, there
exists a finite iteration index K such that, for all k ≥ K,
ρi(k) = ρ̄ and γi(k) = γ̄ for all i = 1, . . . ,m.

In order to prove that the integration of the distributed
approach in [7] within Algorithm 1 is effective, we need
to introduce some assumptions on the step size coefficient
α(k) and on the communication network properties as defined
through the aij(k) coefficients.

Assumption 2 (Step size). The sequence {α(k)}k≥0

is positive and non-increasing. Furthermore, it satisfies∑∞
k=0 α(k) = +∞ and

∑∞
k=0 α(k)2 < +∞.

A typical choice for α(k) satisfying Assumption 2 is α(k) =
α1/(k + 1)α2 , with α1 > 0 and α2 ∈ (0.5, 1]. Note that,
differently from [2], we additionally require the {α(k)}k≥0

sequence to be square-summable.

Assumption 3 (Weight coefficients). For all k ≥ 0 and all
i, j = 1, . . . ,m, aij(k) ∈ R+, and there exists l ∈ (0, 1) such
that aii(k) ≥ l and aij(k) > 0 implies aij(k) > l. Moreover,
for all k ≥ 0

•
∑m
j=1 a

i
j(k) = 1, i = 1, . . . ,m,

•
∑m
i=1 a

i
j(k) = 1, j = 1, . . . ,m.

Assumption 3 requires the agents to agree on an infinite
sequence of doubly stochastic matrices. In case the commu-
nication graph is undirected, then a simple distributed proce-
dure can be employed to ensure doubly stochasticity at each
iteration, see [8, Assumption 6]. Note that Assumption 3 can
be relaxed to requiring row stochasticity only by substituting
the consensus update in step 8 with the so-called “push-sum”
mechanism, see e.g. [9]. The push-sum mechanism has then
to be accounted for explicitly in the proof of the properties of
the distributed scheme. This is not addressed here and is left
for future work.

Assumption 4 (Connectivity). The graph (V,E∞) with nodes
V = {1, . . . ,m} and edges E∞ = {(j, i) : aij(k) >
0 for infinitely many k} is strongly connected, i.e., for any two
nodes there exists a path of directed edges that connects them.
Moreover, there exists T ≥ 1 such that for every (j, i) ∈ E∞,
agent i receives information from a neighboring agent j at
least once every consecutive T iterations.

Assumptions 2-4 are quite standard in the distributed opti-
mization literature and some details on their interpretation can
be found, e.g., in [7], [10]–[12].

Let PLP and D denote the primal-dual pair of optimization
problems obtained by setting ρ appearing in PLP,ρ and Dρ
equal to the consensus value ρ̄ for the tightening coefficient
defined in Proposition 1.

Assumption 5 (Uniqueness). Problems PLP and D have
unique solutions x̄?LP and λ̄?.

Note that in case PLP has multiple solutions (e.g., when it
exhibits a high degree of symmetry), then a small perturbation
in its cost coefficients will render its solution unique, thus
making Assumption 5 fulfilled again. We refer the reader to
[1] for a more in-depth discussion about Assumption 5.

Assumption 6 (Slater). There exists a scalar ζ > 0 and x̂i ∈
conv(Xi), i = 1, . . . ,m, such that

∑m
i=1Aix̂i ≤ b − ρ̄ −

mζ1.

We can now state the two main results of this paper.

Theorem 1 (Finite-time feasibility). Under Assumptions 1–
5, there exists a finite iteration index Kf such that, for all
k ≥ Kf , x(k) = [x1(k)> · · · xm(k)>]>, where xi(k), i =
1, . . . ,m, are computed by Algorithm 1, is a feasible solution
for problem P , i.e.,

∑m
i=1Aixi(k) ≤ b and xi(k) ∈ Xi, i =

1, . . . ,m, k ≥ Kf .

Theorem 2 (Performance guarantees). Under Assumptions 1–
6, there exists a finite iteration index Kp such that, for all
k ≥ Kp, x(k) = [x1(k)> · · · xm(k)>]>, where xi(k), i =
1, . . . ,m, are computed by Algorithm 1, is a feasible solution
for problem P that satisfies the following performance bound:

m∑
i=1

c>i xi(k)− J?P ≤ γ̄ +
‖ρ̄‖∞
pζ

γ̃, (5)

where J?P is the optimal value of P and

γ̃ = p max
i∈{1,...,m}

{
max
xi∈Xi

c>i xi − min
xi∈Xi

c>i xi

}
.



As previously mentioned, we retain the finite-time feasibil-
ity feature and the performance bound of the work in [2], but
without the need of a coordinating unit.

III. PROOF OF THE MAIN RESULTS

Proof of Proposition 1. Consider agent i. Due to Assump-
tion 1, conv(Xi) is a bounded non-empty polyhedron. Then,
due to Corollaries 2.1 and 2.2 and Theorem 2.3 in [13,
Chapter 2], vert(Xi) is a non-empty finite set. As a conse-
quence, the sequences {s̄i(k)}k≥0 and {

¯
si(k)}k≥0 defined

in steps 11 and 12 take values in a finite set. Since they
are component-wise monotonically non-decreasing and non-
increasing sequences, respectively, they converge after a finite
number of iterations, say Ki, to some vectors s̄i and

¯
si, for

all i = 1, . . . ,m. Let ρ̄i = p(s̄i −
¯
si).

For all k ≥ K̄ = max{K1, . . . ,Km} steps 10 and 13
reduce to

ρi(k + 1) = max
j∈Ni(k)

{ρj(k)}, (6)

which is a max-consensus algorithm.
Let Ek = {(j, i) : aij(k) > 0} be the set of directed edges

of the communication graph which are active at iteration k.
Due to Assumption 4, for every k ≥ 0 we have that

E∞ ⊆ ETk =

k+T−1⋃
r=k

Er. (7)

Suppose that agent i is such that ρi(K̄) = ρ̄ ≥ ρ̄j for all
j = 1, . . . ,m. Then, running (6) for T consecutive iterations
will result in ρi′(K̄+T ) = ρ̄ for all i′ such that (i, i′) ∈ E∞ ⊆
ET
K̄

. After other T consecutive iterations ρi′′(K̄+2T ) = ρ̄ for
all i′′ such that (i′, i′′) ∈ E∞ ⊆ ET

K̄+T
. Through a recursive

argument one can show that, after at most dT ≤ (m − 1)T
iterations (d being the diameter of the graph (V,E∞)), every
agent j that can receive information from agent i through a
path of directed edges in E∞, will have ρj(K̄+(m−1)T ) = ρ̄.

Since, by Assumption 4, (V,E∞) is strongly connected,
there exists a path of directed edges connecting agent i to every
agent j, j = 1, . . . ,m. Therefore, setting Kρ = K̄+(m−1)T
we have that ρj(Kρ) = ρ̄ for every j = 1, . . . ,m.

Using a similar reasoning, we have that the {γi(k)}k≥0

sequences generated by (3)-(4) converge after a finite number
of iterations, say Kγ , to some values γ̄, for every i = 1, . . . ,m.

Taking K = max{Kρ,Kγ} concludes the proof.

Proposition 2 (Dual optimality). Under Assumptions 1-5 we
have that

lim
k→∞

‖λi(k)− λ̄?‖ = 0, for all i = 1, . . . ,m. (8)

Proof. By Proposition 1, there exists a K ∈ N such that, for
all k ≥ K, ρi(k) = ρ̄ for all i = 1, . . . ,m. Therefore, for
any k ≥ K Algorithm 1 reduces to the algorithm in [7] with
fi(xi) = c>i xi, gi(xi) = Aixi − b−ρ̄

m , and the local constraint
sets Xi replaced by conv(Xi).

Clearly, fi(·) and gi(·) are linear and the sets conv(Xi)
are convex, therefore, Assumption 1 in [7] is verified. Fur-
thermore, due to the linearity of gi(·), Assumption 3 in
[7] reduces to a feasibility of PLP, which is implied by

Assumption 5. Finally, Assumptions 1, 2, 3, and 4 are the
same of Assumption 2, 4, 5, and 6 in [7]. Therefore, recalling
Theorem 1 in [7], we immediately get (8), thus concluding the
proof.

Proposition 3 (Primal finite-time set convergence). Under
Assumptions 1-5, there exists a finite K such that agent i
tentative primal solution xi(k), i = 1, . . . ,m, generated by
Algorithm 1 satisfies

xi(k) ∈ arg min
xi∈vert(Xi)

(c>i + λ̄?>Ai)xi, k ≥ K. (9)

Proof. From step 8, together with the fact that aij(k) = 0 for
all j 6∈ Ni(k), we have that

`i(k)− λ̄? =
∑

j∈Ni(k)

aij(k)λj(k)− λ̄?

=

m∑
j=1

aij(k)λj(k)− λ̄?

=

m∑
j=1

aij(k)
(
λj(k)− λ̄?

)
, (10)

where the last equality is given by the fact that
∑m
j=1 a

i
j(k) =

1 under Assumption 3. Taking the norm on both sides of (10)
we get

‖`i(k)− λ̄?‖ = ‖
m∑
j=1

aij(k)
(
λj(k)− λ̄?

)
‖

≤
m∑
j=1

aij(k)‖λj(k)− λ̄?‖, (11)

where the inequality is given by the convexity of ‖ · ‖ and
Assumption 3. Taking the limit for k → ∞ on both sides of
(11) together with Proposition 2 yields

lim
k→∞

‖`i(k)− λ̄?‖ = 0, for all i = 1, . . . ,m. (12)

We can therefore follow the same steps in the proof of
Proposition 6 in [2] with `i(k) in place of λ(k) and the fact that
the sequence {`i(k)}k≥0 generated by Algorithm 1 converges
to λ̄?, to get the desired result, thus concluding the proof.

The proof of the main results of this paper are then obtained
by following the same steps as of the proof of Theorem 3 and 4
in [2], respectively. Consistent notations were given to this
purpose. Propositions 5 and 6, and Assumptions 3, 4, and 5
used in the proof of Theorem 3 and 4 in [2] are substituted
by Propositions 2 and 3, and Assumptions 1, 5, and 6 in the
present paper, respectively. References to [14, pag. 117] in [2]
should be replaced by [7, Theorem 2].

Remark 1. An upper bound for Kp in Theorem 2 can be
obtained as a sum of two contributions: i) the worst-case
number of iteration required by the network to explore all the
different combinations of xi ∈ Xi and agree upon a common
ρ̄, and ii) the number of iterations required by the algorithm
in [7] to enter a ball of a certain radius centered in λ̄? (see
the proof of Proposition 6 in [7]). The latter contribution is
not straightforward to derive, and providing an expression of
the bound on Kp needs some further work.
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Fig. 1. Lagrange multipliers sequences for Algorithm 1 (upper plot) and [2,
Algorithm 1] (lower plot). Different colours represent different components
of the Lagrange multipliers vector, and different curves with the same colour
represent estimates of different agents for the same Lagrange multiplier.

IV. APPLICATION: PLUG-IN ELECTRIC VEHICLES
OPTIMAL CHARGING

Algorithm 1 has been tested on the Plug-in Electric Vehicles
(PEVs) optimal charging problem introduced in [1] and further
analyzed in [2]. The problem consists in finding an overnight
charging schedule for a fleet of m vehicles so as to minimize
the charging costs while, at the same time, guaranteeing a
desired state of charge for the morning after and complying
with local constraints and limitations of the electric network.

Focusing on what is referred to as the “vehicle to grid”
set-up in [1], the 8 hour long time horizon is discretized into
24 time slots of 20 minutes each. For every time slot each
vehicle has to decide whether to charge/discharge its internal
battery at a (fixed) given rate or not to do anything. Such
a charging schedule constitutes the optimization vector xi of
vehicle i. The battery dynamics is modeled as a discrete-time
integrator with charging/discharging losses and is subject to
state and input constraints. All these constraints are coded into
vehicle’s i local constraint set Xi. The cost function c>i xi of
each vehicle is the cost of charging the internal battery minus
the revenues for selling part of their energy to the network.
Finally, the network-wide constraints

∑m
i=1Aixi ≤ b to be

satisfied represent the maximum amount of energy that can be
exchanged with the electric network at any given time slot.
The reader is referred to [1] for a complete description of the
problem and all quantities involved.

We considered an instance of the problem with m = 250 ve-
hicles and we applied both Algorithm 1 and the decentralized
method in [2, Algorithm 1]. For Algorithm 1 we considered
a time-varying communication network constructed as fol-
lows: first, the edges of a randomly generated undirected and
connected graph were divided into two groups and activated
alternately, thus satisfying Assumption 4 with T = 2; then, for
each of the two subnetworks a set of coefficients aij satisfying
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Fig. 3. Distance between the ρi(k) generated by Algorithm 1 and their
limiting value ρ̄. Different colours are associated to different agents.

Assumption 3 was generated. For [2, Algorithm 1] we set
α(k) = 10−5

k+1 , while for Algorithm 1 we set α(k) = m 10−5

k+1 .
This is because step 14 in Algorithm 1 contains only the
contribution of agent i to the joint constraint, whereas step 13
in [2, Algorithm 1] contains the contribution of all the m
agents.

In Figure 1 we report a comparison between Algorithm 1
and [2, Algorithm 1] in terms of evolution of the Lagrange
multipliers. Note that, despite the fact that Algorithm 1 is
completely distributed, as opposed to [2, Algorithm 1] which is
only decentralized, the two methods exhibit a similar behavior
towards convergence.

In Figure 2, we also report the behavior of the tenta-
tive solutions obtained by the two algorithms in terms of
primal cost J(x(k)) =

∑m
i=1 c

>
i xi(k) and joint constraint

violation across iterations. Violation is measured in terms of
maxj=1,...,p{

∑m
i=1[Ai]jxi − [b]j}, which is negative if the

solution is feasible. From the figure we can observe that both
algorithms exhibit a similar behavior and that feasibility is
reached within the first 12 iterations.

To quantify the performance achieved by the two solutions,
we also report in the upper plot of Figure 2 the optimal value



J?D of Dρ with ρ = 0, which constitutes a lower bound for
the optimal value J?P of P . Since, for k > 12, x(k) is a
feasible solution (see the lower plot of Figure 2) we have that
J?P ≤ J(x(k)). Therefore J?D ≤ J?P ≤ J(x(k)), and we can
conclude that the performance achieved by both algorithms is
within a 4% distance from the optimum.

Furthermore, the two approaches converge to a very similar
value of ρ̄, thus exhibiting about the same level of conserva-
tiveness. Finally, in Figure 3 we report the distance between
the values of the {ρi(k)}k≥0 sequences and their limiting
value ρ̄, showing that convergence to ρ̄ is achieved after a
finite number of iterations (around 80).

V. CONCLUDING REMARKS

In this paper we proposed a new algorithm which is able to
compute, after a finite number of iterations and in a distributed
way, a feasible solution to a large-scale mixed integer linear
program. The method exploits the separable structure of the
original problem to decompose it into smaller programs, with
the additional side-effect of preserving privacy of the agents
local information in terms of local cost function and constraint
set.

The work retains the state-of-the-art features of finite-time
feasibility and sub-optimality bounds of the algorithm in [2],
which is extended to a completely distributed set-up account-
ing also for time-varying communication among agents, thus
removing the need for a central unit and broadening the
applicability of the approach. The proposed method has been
tested on a plug-in electric vehicles optimal charging problem.

Finite-horizon optimal control problems for discrete time
Mixed Logical Dynamical (MLD) systems introduced in [14]
with linear objective functions can be formulated as an MILP
fitting P , since an MLD system is a hybrid system that is
modeled via a set of linear inequalities involving both discrete
and continuous inputs and state variables. This allows for
further applications of the proposed distributed MILP scheme.

Future research directions include the generalization of our
results to the case of non-convex cost functions, based on the
recent work in [15], and the computation of an upper bound for
the number of iterations required to obtain a feasible solution.
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