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4-D flight trajectory tracking: a receding horizon
approach integrating feedback linearization and

scenario optimization
Luca Deori, Simone Garatti, Member, IEEE, Maria Prandini, Senior Member, IEEE

Abstract—This paper proposes a control strategy to steer an
aircraft along a given reference 4-D trajectory. The aircraft
has a nonlinear dynamics and is subject to constraints related
to its maneuverability and to passengers comfort. Feedback
linearization of the aircraft dynamics and convex relaxation of the
constraints allow for a reformulation of the trajectory tracking
problem that is suitable for a receding horizon implementation.
Uncertainty is affecting the aircraft motion, mainly through wind,
which is described as a Gaussian random field and approximated
on-the-fly by a local autoregressive model. The adoption of a
scenario-based minimization of the tracking error introduced by
the stochastic wind disturbance preserves the problem convexity
and allows to obtain a program that can be solved with limited
computational effort. The wind model update jointly with the
re-computation of the control action at each time step allow to
account for the spatial variability of the random field and to
obtain recursive feasibility of the receding horizon solution.

Index Terms—Flight control; air traffic management; trajec-
tory tracking; feedback linearization; stochastic optimization.

I. INTRODUCTION

Air traffic is increasing rapidly, and this growth is becoming
more and more unsustainable for the current rigidly structured
air traffic management system, where aircraft are forced to
fly along predefined routes. New concepts for managing air
traffic are needed to exploit more efficiently the airspace
capacity and to avoid route congestion and delays. A possible
solution that has been proposed in the literature rests on
the concept of 4-Dimensional (4-D) trajectories and Target
Windows (TWs), [1], [2]. TWs represent constraints on the
4-D aircraft trajectories and should allow for a more efficient
use of the airspace, enhancing predictability of the aircraft
trajectories and improving safety. In the CATS [1] project,
TWs are viewed as a key enabler of new air traffic management
systems involving all different actors (airlines, airports, air
navigation service providers) in the management process.
TWs impose constraints on the aircraft motion in the time-
space domain, in that the aircraft is required to pass through
certain sections of the airspace within some pre-specified
time frames. Additionally to the TWs, physical limitations
on speed and acceleration, as well as constraints related to
passengers comfort must be accounted for when controlling
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the 4-D motion of an aircraft. The control strategy should
also be robust with respect to uncertainty and, in particular,
the presence of wind, [3], [4], [5], [6], [7].

The goal of this paper is developing a control strategy that
is able to steer the aircraft along a reference 4-D trajectory,
robustly with respect to the possible wind disturbance realiza-
tions, while accounting for the aircraft physical limitations and
for comfort and safety requirements. Aircraft motion control
is addressed also in [8], [9], [10], where the presence of
constraints is only partially accounted for. As for the TW
specifications, we assume that the reference 4-D trajectory has
been designed so as to be compatible with both the aircraft
motion capabilities and the TWs, i.e., if it were initialized
along this trajectory and there were no uncertainty affecting its
motion, then, the aircraft could perfectly track it and meet the
TWs constraints (see [11] for a method to design trajectories
that complies with these requirements). Note that the trajectory
is composed by a path and a time law, and tracking it requires
that the aircraft is steered so as to be at the proper position,
at a proper timing. Hence, by keeping the aircraft as close
as possible to the reference trajectory, TW specifications are
satisfied also by the actual aircraft trajectory, compatibly with
the effect of the wind disturbance.

We adopt a discrete time model of the aircraft motion
and a receding horizon strategy that involves minimizing at
each sample time tk a suitably defined finite-horizon cost
subject to appropriate constraints so as to enforce trajectory
tracking and the satisfaction of the aircraft physical limitations
and passenger comfort requirements. The so obtained control
action is applied at time tk only, and the optimization process
is repeated at every sample time over a receding horizon.
When formulating the finite horizon constrained optimization
problem, a key issue for computational and solvability rea-
sons is that of achieving convexity. Given that the model of
the aircraft dynamics is nonlinear, we then apply feedback
linearization so as to eventually globally linearize it. Yet, the
constraints on the aircraft physical limitations and passenger
comfort rewritten with respect to the new state and input
variables of the feedback-linearized model result to be non-
convex. Hence, a major effort is put in reformulating these
constraints as convex constraints, introducing some relaxation,
but just when needed. Such relaxations are appropriately
designed so as to guarantee that the original constraints are
satisfied at least for the first time instant of the current finite
horizon. This way, the actually implemented receding horizon
controller is guaranteed to satisfy the original constraints at



2

all time instants. For a different nonlinear receding horizon
approach that does not resort to feedback linearization see
[12].
The idea of using feedback linearization followed by a con-
vexification of the constraints is not new as it has been adopted
in [13], [14], [15], while [16] discusses the problem from
a general perspective. The challenge, however, is then to
solve a non-trivial global feedback linearization problem and
to develop an ad-hoc method for the convexification of the
constraints, a problem that still lacks a general solution.

To pursue the objective of tracking the reference trajectory,
reference tracking errors are considered and their minimization
is enforced within the finite horizon optimization problem.
The tracking errors however depend on the wind disturbance,
which makes the problem challenging because: (i) the wind
disturbance depends nonlinearly on the aircraft position [17],
[18], [10], and (ii) the wind disturbance is stochastic and has
unbounded support. In this paper, the former issue is addressed
by replacing the original wind disturbance model with a local
approximation around the aircraft current position, which is
accurate in the region of the airspace that the aircraft will
be flying into along the look-ahead time horizon. As for the
second issue, we opted for the minimization of the worst-case
trajectory tracking errors over all possible wind disturbance
realizations except for a set of user-chosen probability ε,
resulting in a chance-constrained optimization program of the
same type as that considered in [19], [20], [21]. Worst-case
minimization, as opposed to average minimization, seems to be
preferable to obtain the robust satisfaction of spatio-temporal
requirements as specified by TWs. Moreover, by choosing ε,
the robustness level can be tuned by the user according to
the desired level of risk for the specific situation at hand.
To handle the resulting probabilistic constraints, we resort to
the scenario approach, [22], [23], [24], [25], which allows
one to find approximate but guaranteed solutions to chance-
constraint optimization problems at low computational effort.
In particular, we rely on the approaches of [26], [19], [21],
[27], [20], where the scenario approach is tailored to the
receding horizon framework. This way, convexity is eventually
recovered in the optimization problem, which can be efficiently
solved at every time step. The so obtained receding horizon
control scheme is well performing and robust with respect to
wind, as it clearly appears from the numerical simulations.

This work further extends our previous work in [28] where
a simpler dynamic is considered and no stochastic wind
perturbation is accounted for, while pursuing a regulation –
not a trajectory tracking – problem. Further developments are
presented in our more recent work in [29] where the wind
model was included. The current manuscript extends [28],
[29] in several directions. More specifically, introduction and
problem position are better motivated, referring to the relevant
literature. A thorough discussion on the application of the
scenario approach, including numerical implementation issues
is given. Many technical aspects involved in the feedback liner-
ization and constraints convexification procedures, which were
omitted in the conference publications, are here detailed. A
more extensive simulation section showing the performance of
the resulting stochastic receding horizon optimization scheme

is presented.
The main novel contribution of this work with respect to

the related literature is that nonlinear dynamics, confort and
actuation constraints, the presence of wind disturbance, and
spatio-temporal constraints are jointly accounted for in the
design of a strategy to navigate an aircraft through the airspace.
This is achieved by integrating feedback linearization and
constrained control within a receding horizon implementation,
where robustness against the spatially and time varying wind
uncertainty is obtained by combining the on-line identification
of a local wind model with scenario optimization.

The rest of the paper is organized as follows. In Section
II we describe the model of the aircraft, the constraints
on the state and control variables as induced by physical
limitations and passengers comfort, and the wind disturbance
model. In Section III we apply feedback linearization to the
aircraft model and reformulate the constraints in the new state
and input variables, eventually introducing suitable convex
relaxations. In Section IV we address the design of the aircraft
control via the receding horizon approach, and adopt an ap-
proximate local model for the wind and the scenario approach
for coping with uncertainty. Simulation results are reported in
Section V. Concluding remarks are drawn in Section VI.

II. MODELS OF THE AIRCRAFT AND WIND DISTURBANCE

A. Aircraft dynamics

We consider a flat earth, point mass model for the aircraft
dynamics, as suggested in [18], [30], [31], [32]. The state
variables are given by the position of the aircraft expressed
in Cartesian coordinates x, y, z with respect to a fixed frame,
the True Air Speed (TAS) of the aircraft V (which is the
relative aircraft speed with respect to the surrounding air), the
heading angle ψ (which is the angle between the projection
of the aircraft velocity on the x-y plane and the x-axis), the
path angle γ (which is the angle between the velocity and the
x-y plane) and the mass m of the aircraft. The inputs are the
Angle of Attack (AoA) α (which is the difference between
the pitch and the path angles), the bank angle φ (which is
the angle between the lift force and the plane containing the
aircraft velocity and the z-axis), and the engine thrust T . The
presence of the wind is modelled by adding a disturbance
(wx, wy , wz) to the aircraft velocity along the x, y, z axes
respectively. The system evolves according to the following
equations 

ẋ
ẏ
ż

V̇

ψ̇
γ̇
ṁ


=



V cosψ cos γ + wx
V sinψ cos γ + wy
V sin γ + wz

−D
m − g sin γ + T cosα

m
L+T sinα
mV cos γ sinφ

L+T sinα
mV cosφ− g

V cos γ
−ηT


, (1)

where g is gravitational acceleration, η is a fuel consumption
coefficient, D(z, V, α) = 1

2ρ(z)SV 2 Cd(1 + b1α + b2α
2) is

the drag force that opposes the aircraft motion in the direction
of the TAS and L(z, V, α) = 1

2ρ(z)SV 2Cl(1 + aα) is the lift
that provides the force to oppose gravity. In the expression
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for D and L, ρ is the air density which is a function of the
altitude z, S is the surface of the wings, and Cd, Cl, b1, b2,
a are suitable positive aerodynamics coefficients.

It is worth noticing that model (1) is well defined and
representative of the aircraft dynamics on a specific domain
only. More precisely, the states x, y, z can take value in R3,
instead the TAS has to be positive V ∈ (0,+∞), the heading
angle can take any value in R, but, since it is an angle, we can
limit its domain to ψ ∈ [0, 2π), the path angle can take values
γ ∈ (−π/2, π/2), and m ∈ (0,+∞). Indeed, being the TAS a
speed, it cannot be negative, and if it is null the heading and the
path angle become not well defined. Moreover, also when the
velocity is aligned with the z-axis ( γ = ±π/2 ) the heading
angle is not well defined. As for the inputs we consider that
T must be non negative T ∈ [0,+∞), the bank angle and the
angle of attack are limited to interval (−π/2, π/2).

In order to account for physical limitations of the aircraft,
comfort and safety requirements, several constraints both on
the state variables and on the input variables have to be
considered as follows, [32].
• Vertical Acceleration z̈ 1

−aZ ≤ z̈ ≤ aZ . (2)

• True Air Speed V

Vmin ≤ V ≤ Vmax, (3)

where Vmin and Vmax depend on the aircraft type; Vmin
is also related to the stall velocity of the aircraft.

• Longitudinal Acceleration

−aL ≤ V̇ ≤ aL. (4)

• Engine Thrust T

Tmin ≤ T ≤ Tmax, (5)

where Tmin and Tmax can be computed according to [32]
and depend on atmospheric conditions and aircraft type.

• Bank Angle φ
−φ̄ ≤ φ ≤ φ̄. (6)

According to [32] φ̄ can vary from 25◦ to 45◦ depending
on the type of aircraft.

• Path Angle γ

γmin ≤ γ ≤ γmax, (7)

where γmin and γmax must be chosen according to the
following reasoning. If the path angle is set to γmin
[γmax] and the engine thrust is kept at its minimum Tmin
[at its maximum Tmax], then the TAS V remains smaller
than Vmax [larger than Vmin].

1In [32] the following constraint is considered

−aN ≤
∆γV

∆t
≤ aN ,

which limits the normal acceleration. Here, we translate it directly into a
bound on the vertical acceleration z̈, taking into account the limitations of γ
in (7).

B. Wind model

The wind velocities wx, wy , wz are modelled as a time
varying vector field (wx = wx(x, y, z, t), wy = wy(x, y, z, t),
wz = wz(x, y, z, t)) obtained as the sum of two contributions:
a deterministic term that represents the forecast of the wind,
and a stochastic term accounting for the mismatch between
forecast and the actual wind encountered by the aircraft, that
is:

wx = wxf + wxs wy = wyf + wys wz = wzf + wzs.

As for the forecast, we rely on the National Oceanic and
Atmospheric Administration (NOAA) Rapid Refresh (RAP)
model [17] which provides the wind velocities wxf , wyf , wzf
in correspondence of a grid of points in the x-y-z space.
The forecast has a time resolution of 1 hour. As for the x,
y coordinates, the grid has a fixed resolution of 13 km, while
as for the z coordinate the grid has a x-y position and time de-
pendent resolution: for each sampled time instant and for each
x-y in the grid, the z coordinate is divided in 37 levels each
corresponding to a decrease of pressure of 2500 Pa. In order to
retrieve the value of the wind velocities wxf = wxf (x, y, z, t),
wyf = wyf (x, y, z, t), wzf = wzf (x, y, z, t) in the generic
position (x, y, z) at the generic time t, we perform a linear
interpolation of the forecast wind velocities in correspondence
of the points of the grid at the vertices of the cell containing
(x, y, z), and, then, we linearly interpolate over time.

As for the stochastic wind components, in order to account
for both the space correlation of the wind (for a fixed time
instant, the closer are two points in space, the more similar are
the wind velocities at those points) and the time correlation
(for a fixed position, the closer the time instants, the more
similar the velocities at these time instants), we adopt the same
model of [18], [10], where (wxs, wys, wzs) is assumed to be a
time varying random field with a correlation that exponentially
decays with distance and with time. Specifically, for every x,
y, z, t, the wind components wxs(x, y, z, t), wys(x, y, z, t),
wzs(x, y, z, t) are zero mean Gaussian random variables with
the following spatio-temporal correlation structure:

E[wxs(x, y, z, t)wxs(x
′, y′, z′, t′)] =

k(z)k(z′)e−σ1|t−t′|e−σ2‖[x−x′ y−y′]‖e−σ3|z−z′|

E[wys(x, y, z, t)wys(x
′, y′, z′, t′)] =

k(z)k(z′)e−σ1|t−t′|e−σ2‖[x−x′ y−y′]‖e−σ3|z−z′|

E[wzs(x, y, z, t)wzs(x
′, y′, z′, t′)] = (8)

kz(z)kz(z
′)e−σ1z|t−t′|e−σ2z‖[x−x′ y−y′]‖e−σ3z|z−z′|

E[wxs(x, y, z, t)wys(x
′, y′, z′, t′)] = 0

E[wxs(x, y, z, t)wzs(x
′, y′, z′, t′)] = 0

E[wys(x, y, z, t)wzs(x
′, y′, z′, t′)] = 0

for all x, y, z, t, x′, y′, z′, t′, where k(z) and kz(z) represent
the variance of the wind velocities at a given altitude z
and the coefficients σ1, σ2, σ3 and σ1z , σ2z , σ3z regulate
the exponential decrease of the correlation between wind
velocities at different positions and time instants as their
corresponding spatial and temporal distance increases.



4

According to the correlation structure in (8), wind velocities
along different axes are independent and, moreover, wind is
isotropic with respect to x, y, i.e. the correlation structure is
invariant under rotations of the x-y plane. As a matter of fact,
the correlation function in (8) is the same for wxs and wys
while wzs has its own correlation function. Note that according
to this model the wind disturbance has unbounded support.
Perhaps, it is worth noticing from the outset that we shall use
this random vector field characterization of the wind velocity
for simulation purposes in validating our strategy in Section
V, whereas the strategy itself will be designed based on a local
wind model identified on-line (see Section IV-B). A possible
approach to generate samples of a random field that satisfy
the correlation structure in (8) is described in [18], [10].

III. FEEDBACK LINEARIZATION AND REFORMULATION OF
THE CONSTRAINTS

A. Feedback linearization

In this section, feedback linearization is applied to (1) so
as to make the deterministic part of the model of the aircraft
linear with respect to some new set of input and state variables.
The obtained model is discretized so as to easy to handle in
the receding horizon framework. Interestingly, the obtained
linear model is very easy to interpret since it describes the
evolution of the aircraft position in Cartesian coordinates with
the respective accelerations as (new) control inputs.

We start by simplifying (1) by neglecting the mass dynam-
ics, since it is quite slow with respect to the other variables
dynamics and it is not a controlled variable in our set-up.

We then define the new state variables as follows:

x1 = x x4 = V cosψ cos γ
x2 = y x5 = V sinψ cos γ
x3 = z x6 = V sin γ

(9)

As anticipated above, the new state variables have a precise
physical meaning: x1, x2, x3 give the position of the aircraft in
Cartesian coordinates, while x4, x5, x6 represent the aircraft
velocity Cartesian components. Moreover (9) is clearly a
bijection and the original state variables can be recovered from
the new ones according to the following inverse relation:

x = x1 V =
√
x2

4 + x2
5 + x2

6

y = x2 ψ = arg(x4, x5)

z = x3 γ = arcsin

(
x6√

x2
4+x2

5+x2
6

)
,

(10)

where arg(x4, x5) denotes the phase of the complex number
x4 + ix5 in [0, 2π).

Our goal is now to first derive the description of the system
in the new state variables, and then define the control inputs,
i.e., the AoA α, the bank angle φ, and the engine thrust T , as
a function of the state and new control input variables so as
to obtain a linear model.

To this purpose we start by setting the engine thrust T to:

T = (D +mg sin γ + τm)
1

cosα
, (11)

where τ is a new auxiliary input replacing the thrust T .
Substituting in (1), the dynamics of V becomes:

V̇ = τ. (12)

Note that τ represents the part of the acceleration provided by
the engine thrust that is still available once the drag force and
the projection of the weight force along the path have been
compensated.

Differentiating (9) and using (1), (11) and (12), we can de-
rive the following equations governing the new state variables
evolution:

ẋ1 = x4 + wx (13)
ẋ2 = x5 + wy

ẋ3 = x6 + wz

ẋ4 = τ cos γ cosψ − V cos γ sinψ
(
L+T sinα
mV cos γ sinφ

)
− V sin γ cosψ

(
L+T sinα

mV cosφ− g
V cos γ

)
ẋ5 = τ cos γ sinψ + V cos γ cosψ

(
L+T sinα
mV cos γ sinφ

)
− V sin γ sinψ

(
L+T sinα

mV cosφ− g
V cos γ

)
ẋ6 = τ sin γ + V cos γ

(
L+T sinα

mV cosφ− g
V cos γ

)
.

If we define as new input variables u1, u2, u3:

u1 = τ cos γ cosψ − V cos γ sinψ
(
L+T sinα
mV cos γ sinφ

)
−V sin γ cosψ

(
L+T sinα

mV cosφ− g
V cos γ

)
(14a)

u2 = τ cos γ sinψ + V cos γ cosψ
(
L+T sinα
mV cos γ sinφ

)
−V sin γ sinψ

(
L+T sinα

mV cosφ− g
V cos γ

)
(14b)

u3 = τ sin γ + V cos γ
(
L+T sinα

mV cosφ− g
V cos γ

)
,
(14c)

then, the last three equations in (13) become linear, thus
leading to:
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =

[
03×3 I3
03×3 03×3

]

x1

x2

x3

x4

x5

x6

+

[
03×3

I3

]u1

u2

u3

+

[
I3

03×3

]wxwy
wz

 .
(15)

Note that, likewise x1, x2, x3, x4, x5, x6, the new inputs u1,
u2, u3 have a precise physical meaning being the Cartesian
components of the aircraft acceleration with respect to the air.

To ease subsequent developments, system (15) is discretized
by applying a constant input in the interval [t, t+ Ts), where
Ts is the sample time, so obtaining:

xk+1 = Axk +Buk +Bwwk (16)

where xk = [x1,k, x2,k, x3,k, x4,k, x5,k, x6,k]T is the state
vector, uk = [u1,k, u2,k, u3,k]T is the input vector and
wk = [w1,k, w2,k, w3,k]T is the disturbance vector and we
set

A =

[
I3 TsI3

03×3 I3

]
B =

[
T 2
s

2 I3
TsI3

]
Bw =

[
TsI3
03×3

]
.
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Derivation of the state feedback linearizing control law

In order to retain the validity of the linear model (15), it
remains to show that, for any admissible value of u1, u2, and
u3, admissible values for the original inputs of the aircraft
model τ , φ and α can be found so that (14a)-(14c) are met.
We next show that equations (14a)-(14c) can indeed be solved
for τ , φ and α as function of the new inputs u1, u2, u3 and of
the state variables x, y, z, V , ψ, γ, thus obtaining the nonlinear
feedback control law linearizing (13).

Calculating u1 cosψ + u2 sinψ and −u1 sinψ + u2 cosψ
from (14a) and (14b) gives:

τ =
1

cos γ

(
u1 cosψ + u2 sinψ

+ sin γ
(L+ T sinα

m
cosφ− g cos γ

))
(17)

(L+ T sinα) sinφ = m (−u1 sinψ + u2 cosψ) , (18)

while from (14c) we have that:

L+ T sinα

mV
cosφ− g

V
cos γ =

u3 − τ sin γ

V cos γ
, (19)

which is the same as:

(L+ T sinα) cosφ = m
u3 − τ sin γ + g cos2 γ

cos γ
. (20)

Using (19) in (17) and solving for τ yields:

τ = cos γ(u1 cosψ + u2 sinψ + u3 tan γ). (21)

To ease the notation define the auxiliary variables:

ν1 = u3 − τ sin γ + g cos2 γ (22)
ν2 = −u1 sinψ + u2 cosψ,

so that (18) and (20) rewrites as:

(L+ T sinα) sinφ = mν2 (23)

(L+ T sinα) cosφ =
m

cos γ
ν1 (24)

If ν1 6= 0, then the bank angle φ can be computed as:

φ = arctan

(
ν2 cos γ

ν1

)
∈
(
−π

2
,
π

2

)
, (25)

which is exactly the domain of φ. If ν1 = 0, then ν2 must be
0 as well, because, otherwise, ν1 = 0 and ν2 6= 0 would imply
φ = ±π/2 while we imposed that φ ∈ (−π/2, π/2). In the
case when ν1 = 0 and ν2 = 0, it turns out that L+T sinα = 0
so that φ can be arbitrarily chosen. Note that if L+T sinα = 0,
then the value of φ does not affect the system dynamics, see
(1). To fix a value we set φ = 0 when ν1 = 0 and ν2 = 0.

Since φ ∈ (−π/2, π/2), L + T sinα must take the same
sign of ν1, hence, substituting the expressions for sinφ and for
cosφ given by (23), (24) into the equation sin2 φ+cos2 φ = 1
one recovers:

L+ T sinα = m

√
ν2

1

cos2 γ
+ ν2

2 · sign (ν1). (26)

Substituting in (26) the expression of T given in (11) and
writing explicitly the dependence of L and D on α, it is then
seen that the AoA α has to satisfy the following equation:

m

√
ν2

1

cos2 γ
+ ν2

2 sign (ν1) = 1
2ρSV

2Cl(1 + aα) (27)

+
(
mτ + gm sin γ + 1

2ρSV
2Cd(1 + b1α+ b2α

2)
)

tanα.

If equation (27) admits a solution, then, there exists a value
of α such that the aircraft dynamics is feedback linearized.
This is the case if the right-hand side of (27) spans all
the values between −∞ and +∞ as α varies in the range
(−π/2, π/2). Note that the right-hand side of (27) is a
continuous function of α, given by the sum of a linear term in
α and a quadratic term in α multiplied by tanα. Hence, since
the image of the linear term is bounded for α ∈ (−π/2, π/2),
the sought property is obtained if and only if the quadratic term
multiplied by tanα tends to −∞ and +∞ as α approaches
−π/2 and π/2. To obtain this, since the coefficient multiplying
α2 is positive (recall that all aerodynamic coefficients Cl, a,
Cd, b1, b2 are positive), a sufficient condition is that the roots
α1 and α2 of the quadratic term are either not real or, if real,
both strictly inside (−π/2, π/2). Indeed, if α1 and α2 are
not real, then the quadratic term is always positive, while if
instead α1 and α2 are real with −π/2 < α1 < α2 < π/2,
then, the quadratic term takes positive values in the intervals
(−π/2, α1) and (α2, π/2). In both cases the quadratic term
multiplied by tanα tends to −∞ and +∞ as α approaches
−π/2 and π/2.2 Requiring that the roots of the quadratic term
are real and belong to (−π/2, π/2) amounts to have

(Cdb1)2 − 4Cdb2

(
Cd +m τ+g sin γ

1
2ρSV

2

)
≥ 0

−Cdb1−

√
(Cdb1)2−4Cdb2

(
Cd+m

τ+g sin γ
1
2ρSV

2

)
2Cdb2

> −π2 ,

where, if πb2− b1 > 0, the second inequality can be rewritten
as:

m(τ + g sin γ) >

(
−π

2

4
b2 +

π

2
b1 − 1

)
1

2
ρSV 2Cd. (28)

In principle, this may limit the domain of validity of the
feedback linearization. However, this is not the case for stan-
dard aircraft operating conditions since (28) is automatically
satisfied when the constraints of Section II-A are enforced (see
the example in Section V).

In principle, when solving (27), we may find a value for
α that maps into a negative engine thrust T when plugged
into (11). However, this is not an admissible solution since
it is not compatible with constraint (5) on T . Interestingly, if
equation (27) has a solution that corresponds to T > 0, then,
this solution is unique. In order to prove this property, we
shall show that the right-hand side of (27) is monotonically

2It is worth noticing that this argument is for the purpose of proving
existence of a solution α and it does not imply that α takes a value close
to either −π/2 or +π/2. On the contrary, in normal aircraft operations, the
right-hand-side of (26) is almost completely compensated by the lift L and,
correspondingly, the AoA α takes small values.
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increasing with α when T > 0. To this purpose, we compute
the derivative of the right-hand side of (27) with respect to α:
1
2ρSV

2Cla+
(
mτ + gm sin γ + 1

2ρSV
2Cd(1 + b1α+ b2α

2)
)

1
cos2 α +

(
1
2ρSV

2Cd(b1 + 2b2α)
)

tanα, (29)

and analyze when it is positive. The term mτ + gm sin γ +
1
2ρSV

2Cd(1+b1α+b2α
2) = T cosα is positive when T > 0,

so that a sufficient condition for (29) to be positive is:

aCl + Cd(b1 + 2b2α) tanα > 0. (30)

Note that since the coefficients Cd, b1, b2 are positive, the term
Cd(b1 + 2b2α) tanα is not positive only for α ∈ [− b1

2b2
, 0],

and in this interval Cd(b1 + b2α) tanα ≥ −Cdb1 tan
(
b1
2b2

)
.

In view of this, a sufficient condition to ensure that (30) holds
is:

aCl − Cd tan

(
b1
2b2

)
b1 > 0.

This condition is usually satisfied because a and Cl are positive
and, moreover, Cl � Cd for standard aircraft.

In conclusion, equation (27) admits a solution in α, and this
solution is unique in the considered range of aircraft operation,
as specified by the constraint is Section II-A.

To find α as a function of the other variables, equation
(27) can be solved numerically, e.g. by bisection. This along
with equations (11), (21), (22) and (25), gives the (nonlinear)
feedback that makes the dynamics of x1, x2, x3, x4, x5, x6

linear with respect to the new inputs u1, u2, u3 (see (15)).

B. Reformulation of the constraints in the new variables

Recall that our goal is implementing a control strategy for
trajectory tracking, by formulating a suitable finite horizon
constrained optimization problem that is repeatedly solved
on-line over a receding horizon. It is then fundamental for
computational and solvability reasons to achieve convexity.
To this purpose, in the previous section we applied feedback
linearization to rewrite the aircraft model as a linear system.
This has undoubtedly the advantage of simplifying the design.
On the other hand, constraints (2)-(7), which must be enforced
for a proper operation of the aircraft, remain non-convex even
when rewritten in terms of new state and input variables x1,
x2, x3, x4, x5, x6, u1, u2, u3.

The aim of this section is then to first reformulate the
constraints over a finite horizon in view of subsequent receding
horizon control implementation, and then to introduce suitable
relaxations, when needed, in order to convexify them. Relax-
ation is conceived in such a way that any original constraint is
guaranteed to be satisfied at the first instant of the considered
time horizon (k for u and k + 1 for x). In this way, since in
the receding horizon implementation only the input designed
for the first time instant is applied and then optimization is
repeated over the new, 1-time step ahead, time horizon, the
original constraints are met at every time instant by the actual
control action that is implemented.

We next consider one by one the constraints introduced in
Section II-A. The convexified constraints will all be linear
except one.

Vertical Acceleration

Since the input u3 is equal to the vertical acceleration z̈,
constraint (2) can be straightforwardly written as:

−aZ ≤ u3,k+i ≤ aZ i = 0, . . . ,M − 1. (31)

True Air Speed V

Being V 2 = x2
4+x2

5+x2
6, constraints (3) on TAS is rewritten

as:

x2
4,k+i + x2

5,k+i + x2
6,k+i ≤ V 2

max i = 1, . . . ,M (32)

x2
4,k+i + x2

5,k+i + x2
6,k+i ≥ V 2

min i = 1, . . . ,M. (33)

Constraints (32) are already convex, and their interpretation is
that the aircraft velocity3 lies inside a sphere of radius Vmax.
Constraints (33) are instead concave as they require that the
aircraft velocity lies outside a sphere of radius Vmin. To attain
convexity, constraints (33) are modified by requiring that the
aircraft velocity stays beyond a plane tangent to sphere of
radius Vmin and oriented according to the current, i.e. at time
k, heading angle ψk and path angle γk, which are available
since the state is measurable. The new constraints can be
expressed by means of the following linear inequalities:

[
1 0 0

]
RyRz

x4,k+i

x5,k+i

x6,k+i

 ≥ Vmin i = 1, . . . ,M, (34)

where the rotation matrices Rz(ψk) and Ry(γk) are defined
as:

Rz =

 cosψk sinψk 0
− sinψk cosψk 0

0 0 1


Ry =

 cos γk 0 sin γk
0 1 0

− sin γk 0 cos γk

 .
Note that (32) and (34) together pose a stricter condition than
(32) and (33), so that the original constraints are always satis-
fied. The drawback with (34) is that, having the plane tangent
to the sphere of radius Vmin fixed orientation, for values of
TAS close to Vmin, the aircraft is forced to accelerate in order
to turn in the finite horizon problem. However this side-effect
is negligible for higher values of TAS, which correspond to the
usual flight conditions, and, moreover, thanks to the receding
horizon strategy, the plane orientation is recomputed at each
time step according the current values of ψk and γk, and this
drawback is further mitigated in the actual trajectory of the
aircraft.

Longitudinal Acceleration

From V̇ = τ and (21), constraint (4) on longitudinal
acceleration rewrites as:

−aL ≤ cos γk+i(cosψk+iu1,k+i + sinψk+iu2,k+i

+ tan γk+iu3,k+i) ≤ aL, i = 0, . . . ,M − 1.

3Note that the aircraft velocity with respect to the surrounding air is a
vector with modulus equal to V and orientation given by the heading angle
ψ and by the path angle γ. Its Cartesian components are x4, x5, x6.
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Further substituting the expressions for γk+i and ψk+i as
functions of x4,k+i, x5,k+i, x6,k+i as in (10), it is easily
seen that the constraints are not convex. We decide then to
approximate them by replacing the values of the heading angle
ψk+i and of the path angle γk+i with their initial values ψk
and γk, which are available. This approximation seems to be
acceptable for the heading angle cannot vary too much in the
considered finite time horizon while, given the limitations on
it, the path angle always keeps close to 0. This yields:

−aL ≤ cos γk(u1,k+i cosψk + u2,k+i sinψk (35)
+ u3,k+i tan γk) ≤ aL, i = 0, . . . ,M − 1,

which are linear constraints on the input vector uk+i, i =
0, . . . ,M − 1. Notably, for i = 0, the constraint on uk is
exactly equivalent to the original one, without any approxima-
tion. Thus, if the control input is designed to satisfy (35), and
a receding horizon is considered, then the original constraint
(4) is not violated by the actual aircraft motion because each
time only the first uk is indeed applied.

Path Angle γ
Recalling that x6 = V sin(γ) the constraint (7) writes as

Vk+i sin γmin ≤ x6,k+i ≤ Vk+i sin γmax, i = 1, . . . ,M,
(36)

which is however non-convex because

Vk+i =
√
x2

4,k+i + x2
5,k+i + x2

6,k+i.

Constraint (36) can be approximated by keeping V fixed to
its initial value Vk for all i = 1, . . . ,M , leading to

Vk sin γmin ≤ x6,k+i ≤ Vk sin γmax i = 1, . . . ,M. (37)

Although the approximation is mild as V cannot vary too much
along the prediction horizon, note, however that (37) does not
guarantee the satisfaction of the original constraint (7), not
even for i = 1. Hence, we prefer to tackle (36) by replacing
Vk+i with the worst-case prediction of its values along the
considered prediction horizon. Given the constraints (3) and
(4) on TAS and on the longitudinal acceleration, the maximal
decrease of TAS over the prediction horizon is

V wc
−

k+i = max{Vk − iTsaL, Vmin} i = 0, . . . ,M,

while the maximal increase is

V wc
+

k+i = min{Vk + iTsaL, Vmax} i = 0, . . . ,M.

Turning back to (36), since sin γmin is negative and sin γmax
is positive the worst-case is achieved when Vk+i takes the
smallest values, which leads to enforce the constraints

V wc
−

k+i sin γmin ≤ x6,k+i ≤ V wc
−

k+i sin γmax i = 1, . . . ,M,
(38)

in place of (36). The constraints in (38) pose a stricter condi-
tion than (36), so that when (38) is applied the satisfaction of
the original constraint is guaranteed along the whole prediction
horizon. A compromise between (37) and (38) consist in fixing
V to the first step worst case prediction V wc

−

k+1 , that is:

V wc
−

k+1 sin γmin ≤ x6,k+i ≤ V wc
−

k+1 sin γmax i = 1, . . . ,M.
(39)

This way the original constraint is guaranteed for i = 1
only, but its satisfaction along all the aircraft operation is
recovered thanks to receding horizon. On the other hand,
the conservatism introduced by worst case safeguarding is
mitigated and a better performance is achieved.

Bank Angle φ

In view of (18), the constraint (6) on the bank angle can be
rewritten as:

| − sinψk+iu1,k+i + cosψk+iu2,k+i| (40)

≤ sin φ̄
Lk+i + Tk+i sinαk+i

m
, i = 0, . . . ,M − 1.

Taking the squares and recalling (26), (22), we get:

ν2
2,k+i ≤ sin2 φ̄(

ν2
1.t+i

cos2 γk+i
+ ν2

2,k+i), i = 0, . . . ,M − 1,

which in turn rewrites as

ν2
2,k+i

cos2 φ̄

sin2 φ̄
cos2 γk+i ≤ ν2

1,k+i, i = 0, . . . ,M − 1.

Recalling the definition of ν1,k+i and because of the limita-
tions on vertical and longitudinal accelerations, and on the
path angle, it can be easily seen than ν1 and cos γ are always
positive.4 Hence, taking the square root we have

|ν2,k+i|
cos φ̄

sin φ̄
cos γk+i ≤ ν1,k+i i = 0, . . . ,M − 1,

so that replacing the expression of ν1,k+i, ν2,k+i in (22), the
constraints (40) are eventually rewritten as:

| − u1,k+i sinψk+i + u2,k+i cosψk+i|
cos φ̄

sin φ̄
cos γk+i

≤ u3,k+i + g cos2 γk+i − sin γk+i cos γk+i(u1,k+i cosψk+i

+ u2,k+i sinψk+i + u3,k+i tan γk+i), i = 0, . . . ,M − 1.

Similarly to previous cases, convexity is recovered replacing
ψk+i and γk+i with their initial value γk and ψk:

| − sinψku1,k+i + cosψku2,k+i|
cos φ̄

sin φ̄
cos γk (41)

≤ u3,k+i + g cos2 γk − sin γk cos γk(cosψku1,k+i

+ sinψku2,k+i + tan γku3,k+i), i = 0, . . . ,M − 1.

Note that, for each i the constraint in (41) is linear and for
i = 0 is exactly equivalent to the original constraint on the
bank angle, so that, thanks to receding horizon, the actual
aircraft operation can be enforced to satisfies (6) for all time
instants through (41).

4In particular, note that if ν1 ≤ 0, then u3 ≤ τ sin γ − g cos2 γ, see
(22). In this case, given the limitations on the thrust, the vertical acceleration
u3 would be mainly determined by the gravitational force and this would be
incompatible with the required flight conditions.
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Engine Thrust T

Recalling (11), the constraint on the engine thrust can be
written as:

Tmin ≤ (mτk+i +D(x3,k+i, Vk+i, αk+i) +mg sin γk+i)

1

cosαk+i
≤ Tmax, i = 0 . . .M − 1,

which in turn, by rewriting τ as in (21) and sin γ = x6

V ,
becomes:

Tmin ≤
(
m cos γk+i(u1,k+i cosψk+i + u2,k+i sinψk+i

+ u3,k+i tan γk+i) +D(x3,k+i, Vk+i, αk+i) (42)

+mg
x6,k+i

Vk+i

) 1

cosαk+i
≤ Tmax, i = 0 . . .M − 1.

Constraint (42) is non-convex because of its dependence on
Vk+i, ψk+i, γk+i, x3,k+i and αk+i.
We, hence, proceed as follows. As in (35) the value of the
heading angle ψk+i and of the path angle γk+i are replaced
by their initial value ψk and γk which introduces a mild
approximation as discussed above5. Likewise, we replace
x3,k+i and Vk+i with their initial values x3,k and Vk. Again
this approximation is sensible because the limitation on the
vertical acceleration, on TAS and on the path angle implies
that V and x3 cannot vary too much in the considered finite
horizon (note that D depends on x3 through the function ρ(x3)
which describes how air density varies with altitude and this
further reduces the impact of variation of x3).

Hence the constraint on engine thrust rewrites:

Tmin ≤
(
m cos γk(u1,k+i cosψk + u2,k+i sinψk (43)

+ u3,k+i tan γk) +D(x3,k, Vk, αk+i)

+mg
x6,k+i

Vk

) 1

cosαk+i
≤ Tmax, i = 0 . . .M − 1.

which is still non-convex because of its dependence on the
angle of attack αk+i which is a control input and cannot be
set equal to αk. We then enforce the constraint robustly with
respect to all the possible values that α can take as u1,k,
u2,k, u3,k vary while satisfying the other constraints. More
precisely, we first compute the admissible range of values for
α, [α(xk), α(xk)], where α(xk) and α(xk) are the minimum
and the maximum value for α achieved by solving equation
(27) when the state is kept fixed to the current value xk
and the inputs u1,k, u2,k, u3,k take all the feasible values
in accordance to the constraints on the vertical acceleration
(31), the longitudinal acceleration (35), the path angle (38),
and the bank angle (41). We can then enforce on the engine
thrust the robust constraint with respect to the values that can
be possibly taken by α:

T̃min ≤ mg x6,k+i

Vk
+m cos γk(u1,k+i cosψk (44)

+ u2,k+i sinψk + u3,k+i tan γk) ≤ T̃max,
i = 0, . . . ,M − 1,

5Note to this purpose that, though γk+i keeps close to 0, replacing sin γk+i

with sin γk may lead to poor approximation because it is multiplied by a big
factor like mg. Hence, it was important to first write sin γ = x6

V
(so that the

constraint is actually imposed on x6) before substituting γk+i with γk .

where we set

T̃min = max
α∈[α(xk), α(xk)]

{Tmin cosα−D(x3,k, Vk, α)}

T̃max = min
α∈[α(xk), α(xk)]

{Tmax cosα−D(x3,k, Vk, α)} .

Remarkably, constraints (44) are linear constraints. More-
over the introduced approximations are such that the original
constraints (42) is satisfied for i = 0. As a matter of fact, the
replacement of ψk+i, γk+i, Vk+i, x3,k+i with ψk, γk, Vk, x3,k,
introduces no error for i = 0, while being robust with respect
to the values taken by α in correspondence of xk implies that
(44) for i = 0 is a stricter condition than (42) for i = 0.
This is of most importance because it implies that a control
action designed so as to satisfies (44) and implemented along
a receding horizon actually satisfies (42) at all time instants.
Note eventually that while computing (44), the admissible
range [α(xk), α(xk)] is adapted to the current state xk. This
introduces a possible error at the subsequent time instants
for i ≥ 1. One possibility would be that of being robust
with respect to a larger range of admissible values for α,
which is valid for all possible feasible states and not only for
the current one. This way constraints guaranteed at all time
instants k+ i, i = 0, . . . ,M − 1 are obtained, but at the same
time an extreme conservatism is introduced, which leads to
poor performance or even to unfeasibility. The constraint in
(44), instead, seems to achieve the best trade off between level
of approximation and conservatism and allows one to obtain
a good performance.

Concluding remarks

Note that all the derived convex constraints (31), (32), (34),
(35), (39), (41), (44) do not depend on the wind disturbance
which affects only x1, x2, x3 (see (16)).
Moreover it is perhaps worth noticing that the limitations on
path angle posed by γmin = −3◦ and γmax = 5◦ keep the
projection of the weight force on the longitudinal direction
limited. As it can be easily verified, this ensures that for every
admissible operating condition the engine thrust is always (that
is without violating the limitations on it) able to counteract the
drag and possibly the longitudinal component of the weight
force without enforcing the aircraft to increase or decrease
the TAS. This means that keeping TAS, heading angle and
path angle constant is always feasible. The constraints of this
section are then always satisfied by the solution uk+i = 0,
i = 0, . . . ,M − 1. This guarantees that the feasibility of the
finite horizon optimization problem to be solved at each time
instant k is not compromised by the constraints on aircraft
physical limitations, safety and passenger comfort discussed
in this section.

IV. RECEDING HORIZON CONTROL STRATEGY

Let (xR1 , x
R
2 , x

R
3 ), and (ẋR1 , ẋ

R
2 , ẋ

R
3 ) denote the reference

trajectory and velocity that the aircraft should track. We
recall that it is assumed that a perfect tracking of the ref-
erence trajectory and velocity guarantees the satisfaction of
spatio/temporal constraints as given by TWs. Moreover, the
reference trajectory and velocity have been suitably designed
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so as to be compatible with the aircraft motion capabilities
(see [11] for a possible approach). Given that the aircraft
dynamics is affected by wind, the aircraft may deviate from
the reference trajectory, which motivates the introduction of
a receding horizon controller that steers it back and makes
it follow the reference trajectory robustly with respect to the
wind disturbance.

A. Finite horizon optimization problem

The main ingredient of our control strategy is the formula-
tion of a suitable finite horizon optimization problem where
a suitable cost function J is chosen and possibly additional
constraints on the aircraft position are included besides the
actuation and comfort constraints discussed in the previous
sections.
Given the current time k, we define at each time k + i,
i = 0, . . . ,M , the position error ξk+i as the difference between
aircraft position x1,k+i, x2,k+i, x3,k+i and reference position
xR1,k+i, x

R
2,k+i, x

R
3,k+i. By using the rotation matrix

Rz(ψ
R
k+i) =

 cos(ψRk+i) sin(ψRk+i) 0
− sin(ψRk+i) cos(ψRk+i) 0

0 0 1


associated with the reference heading angle ψRk+i =

arctan(
ẋR
1,k+i

ẋR
2,k+i

), we can express the position error ξk+i in terms
of longitudinal, lateral, and vertical components with respect
to the reference trajectory:

ξk+i = Rz(ψ
R
k+i)

x1,k+i

x2,k+i

x3,k+i

−
xR1,k+i

xR2,k+i

xR3,k+i

 .

One primary objective of the finite horizon optimization
problem is to keep the position error ξk+i as small as
possible. Note, however, that ξk+i depends on the states
x1,k+i, x2,k+i, and x3,k+i which are meant to be replaced
by their expressions as functions of the input u and the
disturbance w computed according to dynamics (16), so
that ξk+i is eventually a function of the wind disturbance:
ξk+i = ξk+i(uk, . . . ,uk+i−1,wk, . . . ,wk+i−1). We should
then account for the presence of the wind disturbance in
the minimization problem formulation. In this work, we opt
for the minimization of the worst-case trajectory tracking
errors over all possible wind disturbance realizations except
for a set of user-chosen probability ε. where ε ∈ (0, 1).
Reason is that worst-case minimization, as opposed to average
minimization, seems to be preferable for the robust satisfaction
of spatio-temporal requirements as specified by TWs. The
optimization problem can be posed by introducing 3 · M
additional optimization variables hL,i, hl,i, hv,i, i = 1, . . . ,M
to be minimized (see the specification of the cost function
below) and to enforce that these variables bound the absolute
value of the three components of the position error along the
prediction horizon with probability 1− ε, namely:

P{|ξk+i| ≤

hL,ihl,i
hv,i

, i = 1, . . . ,M} ≥ 1− ε, (45)

where the inequality ≤ has to be intended component-wise.
The violation probability ε is a design parameter, which can
be modulated to compromise between robustness and tracking
performance: in the limit, when ε is close to 0, we minimize
the tracking accuracy all over all wind disturbance realizations,
thus getting a conservative (large) value of the tracking error
since the wind disturbance w has unbounded support. Vicev-
ersa, the best tracking accuracy is achieved when ε tends to 1,
but it is violated by almost all wind disturbance realizations.
By selecting a proper ε, the user can eventually achieve a
proper guaranteed tracking error, which e.g. accomplish with
the presence of TWs, and a high enough robustness level for
this guarantee.

As for the cost function J , we opt for the sum of two terms:
one that depends on the input acceleration u only and accounts
for fuel consumption and passenger comfort, and a second
term that accounts for the minimization of the position error
thresholds hL,i, hl,i, hv,i, i = 1, . . . ,M as discussed above.
Namely,

J =

M−1∑
i=0

µiudu
T
k+iRuk+i + µLc

M∑
i=1

µi−1
Ld hL,i (46)

+ µlc

M∑
i=1

µi−1
ld hl,i + µvc

M∑
i=1

µi−1
vd hv,i,

where R, µLc, µlc, µvc, µud, µLd, µld, µvd are weights that are
now discussed. The weighting matrix R is chosen as follows

R = RTrotR
T
norRcRnorRrot,

where

Rrot =

 cosψk sinψk 0
− sinψk cosψk 0

0 0 1


is a rotation matrix that transforms u1 and u2 (namely, the
accelerations along the x and y axes) into the longitudinal
and lateral accelerations with respect to the initial value of the
heading angle ψk, whereas Rnor = diag

(
1
aL
, 1
g tan φ̄

, 1
aZ

)
is a normalization matrix, chosen according to the limits on
accelerations. Eventually, matrix Rc allows one to weight the
longitudinal and lateral accelerations, as well as the vertical
acceleration, which are directly related to fuel consumption
and comfort. The weight matrix Rc, together with weights
µLc, µlc, µvc regulate the relative importance given to input
and position error components, so as to achieve a proper trade-
off between saving the control input and keeping the position
error small, while the weights µud, µLd, µld, µvd ∈ (0 1]4

can be used to give greater importance to the first time steps,
which are the most important for the actual aircraft response
because of the adopted receding horizon strategy.
Thus, given the discrete-time model of Section III, the convex
constraints discussed in Section III-B, the probabilistic con-
straint in (45) and the cost function (46) described above, the
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overall finite horizon optimization problem is as follows:

min
uk+i i = 0 . . .M − 1

hL,i, hl,i, hv,i i = 1 . . .M

J subject to: (47)

constraints (31) (32) (34) (35) (39) (41) (44)

P{|ξk+i(wk, . . . ,wk+i−1)| ≤

hL,ihl,i
hv,i

, i = 1, . . . ,M} ≥ 1− ε.

Receding horizon control is then obtained by applying the first
element uk of the computed control actions and repeating the
optimization (47) at each time step.

Note that problem (47) is hard to solve because of the
presence of the probabilistic constraint and of the complex
probabilistic model of the wind, which altogether make it non
convex. As a matter of fact, w is not a standard additive
disturbance, but it depends on the aircraft position which in
turn is a function of the input to be optimized, as described in
Section II-B. In Section IV-B we hence revisit the wind model
so that in (47) w can be regarded as a standard additive distur-
bance. Then, in Section IV-C problem (47) with the revisited
wind model is solved by means of a randomized approach for
computational reasons. Eventually, Section IV-D discusses the
numerical implementation of the final optimization program
so as to further speed up its resolution.

B. Modelling wind in the optimization problem

Both the forecast that provides the wind deterministic com-
ponent, and the random field that models the wind stochastic
component introduce a nonlinear dependence of the wind ve-
locity on the aircraft position (x1, x2, x3), which compromises
the convexity of the optimization problem (47). Indeed, the
wind forecast is a look-up table that maps the aircraft position
into the wind velocities, and the covariance matrices that
define the wind random field in (8) depend on the position of
the aircraft as well. Note however that, being performed over
a finite horizon, optimization at each time step requires the
model of the wind over a neighborhood of the current aircraft
position only. Since both the deterministic and stochastic
components typically show a weak variability in space, the
idea is then to build an approximated local model of the wind
that does not depend on x1, x2 and x3. This model is updated
at each time step so as to track the aircraft change of position
in accordance to the receding horizon implementation of the
controller.

As for the deterministic component of the wind
wf,k+i(x1,k+i, x2,k+i, x3,k+i), i = 0, . . . ,M , we simply
approximate it with ŵf,k+i which is, i by i, the average of
the forecast wind over the hyper-rectangle: [−VkTs, VkMTs]×
[−VkTsM2 , VkTs

M
2 ] × [VkTsM sin γmin, VkTsM sin γmax],

where the origin is centred in the current aircraft position
x1,k+i, x2,k+i, x3,k+i and axes are oriented according to
the current aircraft velocity orientation given by ψk+i, γk+i.
Note that the size of the hyper-rectangle is determined by the
amount of space that the aircraft can cover in the finite horizon
M according to the current TAS Vk. ŵf,k+i is computed by
gridding the hyper-rectangle, calculating the wind determin-
istic components in correspondence of these grid points by

linear interpolating the data provided by wind forecast and,
eventually, by averaging these values. This way ŵf,k+i is
a function of time only and it is straightforward to account
for it in the optimization problem. Despite its simplicity, this
approach works fine thanks to the limited variability of the
wind forecast over the distances traveled in the considered
finite prediction horizon.

As for the stochastic component of the wind,
ws,k+i(x1,k+i, x2,k+i, x3,k+i), i = 0, . . . ,M , we approximate
it by means of three discrete time stochastic Auto-Regressive
(AR) processes, whose parameters are identified based on the
past wind values experienced along the aircraft trajectory up
to time instant k − 1 preceding the current time instant k.
As a matter of fact, past wind velocities along the aircraft
trajectory are easily recovered from the aircraft dynamics in
(16) as:wx,lwy,l
wz,l

 =
1

Ts

x1,l+1

x2,l+1

x3,l+1

−
x1,l

x2,l

x3,l

−
x4,l

x5,l

x6,l

− Ts
2

u1,l

u2,l

u3,l

 ,
(48)

from which the past stochastic wind components can be
computed by simply subtracting the deterministic ones. The
computed values wxs,l, wys,l, wzs,l, l = 0, 1, . . . , k − 1, are
seen as realizations of time series and used to recursively
identify the following AR models, one for each wind stochastic
component:

ŵxs,l = ϕTxs,lθx + exs,l

ŵys,l = ϕTys,lθy + eys,l (49)

ŵzs,l = ϕTzs,lθz + ezs,l

where exs ∼ WGN(0, λ2
x), eys ∼ WGN(0, λ2

y), ezs ∼
WGN(0, λ2

z) (WGN stands for White Gaussian Noise) and

ϕxs,l = [ŵxs,l−1, . . . , ŵxs,l−m, 1]T

ϕys,l = [ŵys,l−1, . . . , ŵys,l−m, 1]T

ϕzs,l = [ŵzs,l−1, . . . , ŵzs,l−m, 1]T

are the regressors, m is the model order, and θx, θy , θz are
the model parameter vectors. Note that, given the strong wind
correlation with respect to both time and space it may be that
non zero mean models have to be preferred to best fit the
available data records: the ones in the regressors are introduced
to this purpose. The identified AR models are used as models
for the stochastic wind components over the finite horizon
[k, k +M ].
Eventually, at each time step, a new data point, computed
via (48), becomes available and the AR models have to be
updated. To this purpose we resort to the Recursive Least
Square (RLS) algorithm with forgetting factor µ:

θj,k = θj,k−1 + Sj,kϕjs,k−1(wjs,k−1 − ϕTjs,k−1θj,k−1)

Sj,k =
1

µ
(Sj,k−1 −

Sj,k−1ϕjs,k−1ϕ
T
js,k−1Si,k−1

µ+ ϕTjs,k−1Sj,kϕjs,k−1
) (50)

j = x, y, z.
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The white noise variances are also estimated as:

λ2
j =

∑k−1
i=1 µ

k−i(wjs,i − ϕTjs,iθj,k)2∑k−1
i=1 µ

k−i
, j = x, y, z.

Note that in the AR models the dependence of the wind with
respect to space position is neglected. However, thanks to the
fact that the identification is repeated at each time step and that
a forgetting factor is introduced so as to discard past data that
are no more representative of the current situation, the model
is tuned to the wind characteristics in the region of space close
to the current aircraft position. The strong correlation of the
wind in time and space should further foster the identification
of a good model for the wind. Note also that the proposed
approach can be used irrespectively of the availability of
the stochastic model of the wind field in (8). Also it can
account for all disturbances other than wind acting on the
aircraft model as due to model errors, noisy measurements or
noisy reconstructions of the state variables, etc. This way its
usage can enforce additional robustness to the design of the
controller.

C. Resolution of the optimization problem with the scenario
approach

The finite horizon optimization problem (47) can be refor-
mulated as follows by simply replacing w with ŵ = ŵf +ŵs

as given by the proposed approximate wind model:

min
uk+i i = 0 . . .M − 1

hL,i, hl,i, hv,i i = 1 . . .M

J subject to: (51)

constraints (31) (32) (34) (35) (39) (41) (44)

P{|ξk+i(ŵk, . . . , ŵk+i−1)| ≤

hL,ihl,i
hv,i

 , i = 1, . . . ,M} ≥ 1− ε.

Being ŵl a Gaussian process that enters additively the state
equation and that is independent of the input uk+i, i =
1, . . . ,M , it can be proved that the probabilistic constraint in
(51) is indeed a convex constraint, see [33], [34]. Nonetheless
the resolution of (51) may still be problematic because the
obtained constraint does not belong in general to classes
of constraints for which efficient resolution algorithms exist,
and general purpose algorithms have to be used instead.
This drawback is particularly annoying in the present aircraft
motion control application because problem (51) is meant to
be solved on board in a small fraction of the sampling time
with limited computational resources.

We, hence, resort to the scenario approach, a randomized
method to approximately solve chance-constrained problems
such as (51), which has been recently introduced and discussed
in [22], [23] and applied to stochastic constrained control and
receding horizon control in [26], [19], [27], [35], [25]. The
idea of the scenario approach is very simple: a bunch of N re-
alizations of the disturbance, say {ŵ(j)

k ŵ
(j)
k+1 . . . ŵ

(j)
k+M−1},

j = 1, . . . , N, are generated according to the last identi-
fied model for wind, where the last m wind observations
wk−1,. . .,wk−m are used as initialization of (49). Then, the
probabilistic constraint is replaced with the N constraints

obtained in correspondence of the extracted disturbance re-
alizations. Namely:

min
uk+i i = 0 . . .M − 1

hL,i, hl,i, hv,i i = 1 . . .M

J subject to: (52)

constraint (31) (32) (34) (35) (39) (41) (44)

|ξk+i(ŵ
(j)
k , . . . , ŵ

(j)
k+i−1)| ≤

hL,ihl,i
hv,i

,
i = 1, . . . ,M, j = 1, . . . , N.

Note that the new N constraints replacing the probabilistic
one are linear constraints, and, overall, (52) is a quadratically
constrained quadratic program which can be very efficiently
solved by means of standard solver like e.g. CPLEX, [36].
Moreover, despite its apparent naivety the scenario approach
is grounded on a solid theory that provides precise guarantees
about the feasibility of the solution obtained solving problem
(52) for the original chance-constrained problem (51).

More precisely, according to the results of [24] along with
the explicit expression for N provided in [37], [38], if N is
chosen so as to satisfy

N ≥ 1

ε

(
d+ 1 + ln(1/β) +

√
2(d+ 1) ln(1/β)

)
, (53)

where d is the number of optimization variables (in our setup
d = 6M ), then the solution of problem (52) is feasible for
problem (51) with confidence 1−β. Thanks to the logarithmic
dependence, very small values of β such as 10−6 or even 10−9

can be enforced without affecting N too much, and, with such
small values for β, the solution achieved solving (52) can be
deemed feasible for (51) beyond any reasonable doubts.

The guarantee inherited from the results of [24] described
above regards the solution of each finite horizon optimization
problem (52). In the receding horizon implementation, the
solution is recomputed at each time step by shifting the time
horizon one step forward, and one is typically interested in
evaluating the behavior of the resulting closed-loop control
system. To this purpose, let (u?k, h

?
L,k+1, h

?
l,k+1, h

?
v,k+1) be

that part of the solution of problem (52) that refers to the
first-time-instant and, hence, provides the input that, k by k,
is actually applied to the aircraft system, according to the
receding horizon implementation. Denote by x?k+1 and ξ?k+1

the corresponding closed loop aircraft state and position error
respectively. Constraints (31), (32), (34), (35), (39), (41), (44)
are satisfied by u?k, x?k+1 by construction, and, hence, the
original physical and comfort limitations posed in (2)-(7) are
met for every k.

Let

vk =

{
1 if ξ?k ≤ [h?L,k, h

?
l,k, h

?
v,k]T

0 otherwise
.

Consider the condition

lim
k→∞

inf
1

k

k∑
j=0

vj ≥ 1− ε, (54)

i.e., that the ratio of the number of times in which the actual
position error ξ?k is within the bounds h?L,k, h?l,k, h?v,k is
asymptotically larger than or equal to 1−ε. A specific analysis



12

tailored to the problem of evaluating this asymptotic ratio (see
[39], [27]) shows that

lim
k→∞

inf
1

k

k∑
j=0

vj ≥ 1− d

N + 1
(55)

almost surely, and, hence, it is enough to take N in (52) such
that

N ≥ d

ε
− 1, (56)

with a reduction of the disturbance extractions required at each
time k. Given that only the satisfaction of thresholds h?L,k,
h?l,k, h?v,k at the current time k enters the definition of vk, it
is more convenient to reformulate the scenario program (52)
as follows

min
uk+i i = 0 . . .M − 1

hL,i, hl,i, hv,i i = 1 . . .M

J subject to: (57)

constraint (31) (32) (34) (35) (39) (41) (44)

|ξk+1(ŵ
(j)
k )| ≤

hL,1hl,1
hv,1

, j = 1 . . . N

|ξk+i(ŵ
(j′)
k , . . . , ŵ

(j′)
k+i−1)| ≤ [

hL,ihl,i
hv,i

,
i = 2, . . . ,M, j′ = N + 1, . . . , N +N ′,

where the first time instant position error constraint is ac-
counted for separately from the constraint corresponding to
the other time steps, and N + N ′ extractions of ŵ are
considered. In this case, extractions N + 1, . . . , N +N ′ play
no role as for guaranteeing (54), and, hence, N ′ can be
decided separately, either heuristically or in order to obtain
P{|ξk+i(ŵk, . . . , ŵk+i−1)| ≤ [hL,i hl,i hv,i]

T } ≥ 1 − ε′ for
some ε′ ≥ ε, using the bound (53) with d replaced by 6M −6
and ε by ε′. Correspondingly, (55) becomes

lim
k→∞

inf
1

k

k∑
j=0

vj ≥ 1− ζ

N + 1
,

where ζ is the number of optimization variables appearing
in the first-time-instant constraint only (in the case at hand
ζ = 6), and, hence, condition (56) can be rewritten as:

N ≥ ζ

ε
− 1, (58)

which further reduces the number of required disturbance
realizations, and hence the computational effort.

D. Numerical issues

The scenario problems (52) and (57) can be very efficiently
solved thanks to their particular structure and to convexity.

By accounting for the system dynamics (16), the position
constraints in these problems can be rewritten as:∣∣∣∣∣∣∣Rz(ψ

R
k+i)


x1,k + Ts

∑i−1
l=0 x4,k+l(u1) +

T2
s
2

∑i−1
l=0 u1,k+l

x2,k + Ts

∑i−1
l=0 x5,k+l(u2) +

T2
s
2

∑i−1
l=0 u2,k+l

x3,k + Ts

∑i−1
l=0 x6,k+l(u3) +

T2
s
2

∑i−1
l=0 u3,k+l


+Ts


∑i−1

l=0 w
(j)
x,k+l∑i−1

l=0 w
(j)
y,k+l∑i−1

l=0 w
(j)
z,k+l

−

xR1,k+i

xR2,k+i

xR3,k+i



∣∣∣∣∣∣∣ ≤

hL,k+i

hl,k+i

hv,k+i

 . (59)

We can then isolate in each row the term that depends on the
wind disturbance, and consider the constraints that correspond
to the worst case among the extracted wind realizations, in
place of all the constraints. That is the position constraints
(61) are equivalent to:

−

hL,k+i

hl,k+i

hv,k+i

− min
j=1,...,N

Rz(ψ
R
k+i)Ts


∑i−1

l=0 w
(j)
x,k+l∑i−1

l=0 w
(j)
y,k+l∑i−1

l=0 w
(j)
z,k+l




≤ Rz(ψ
R
k+i)

−

xR1,k+i

xR2,k+i

xR3,k+i

 (60)

+

x1,k + Ts

∑i−1
l=0 x4,k+l(u1) +

T2
s
2

∑i−1
l=0 u1,k+l

x2,k + Ts

∑i−1
l=0 x5,k+l(u2) +

T2
s
2

∑i−1
l=0 u2,k+l

x3,k + Ts

∑i−1
l=0 x6,k+l(u3) +

T2
s
2

∑i−1
l=0 u3,k+l




≤

hL,k+i

hl,k+i

hv,k+i

− max
j=1,...,N

Rz(ψ
R
k+i)Ts


∑i−1

l=0 w
(j)
x,k+l∑i−1

l=0 w
(j)
y,k+l∑i−1

l=0 w
(j)
z,k+l


 ,

By accounting for the system dynamics (16), the position
constraints in these problems can be rewritten as:∣∣∣∣∣∣∣Rz(ψ

R
k+i)


x1,k + Ts

∑i−1
l=0 x4,k+l(u1) +

T2
s
2

∑i−1
l=0 u1,k+l

x2,k + Ts

∑i−1
l=0 x5,k+l(u2) +

T2
s
2

∑i−1
l=0 u2,k+l

x3,k + Ts

∑i−1
l=0 x6,k+l(u3) +

T2
s
2

∑i−1
l=0 u3,k+l


+Ts


∑i−1

l=0 w
(j)
x,k+l∑i−1

l=0 w
(j)
y,k+l∑i−1

l=0 w
(j)
z,k+l

−

xR1,k+i

xR2,k+i

xR3,k+i



∣∣∣∣∣∣∣ ≤

hL,k+i

hl,k+i

hv,k+i

 . (61)

We can then isolate in each row the term that depends on the
wind disturbance, and consider the constraints that correspond
to the worst case among the extracted wind realizations, in
place of all the constraints. That is the position constraints
(61) are equivalent to:

−

hL,k+i

hl,k+i

hv,k+i

− min
j=1,...,N

Rz(ψ
R
k+i)Ts


∑i−1

l=0 w
(j)
x,k+l∑i−1

l=0 w
(j)
y,k+l∑i−1

l=0 w
(j)
z,k+l




≤ Rz(ψ
R
k+i)

−

xR1,k+i

xR2,k+i

xR3,k+i

 (62)

+

x1,k + Ts

∑i−1
l=0 x4,k+l(u1) +

T2
s
2

∑i−1
l=0 u1,k+l

x2,k + Ts

∑i−1
l=0 x5,k+l(u2) +

T2
s
2

∑i−1
l=0 u2,k+l

x3,k + Ts

∑i−1
l=0 x6,k+l(u3) +

T2
s
2

∑i−1
l=0 u3,k+l




≤

hL,k+i

hl,k+i

hv,k+i

− max
j=1,...,N

Rz(ψ
R
k+i)Ts


∑i−1

l=0 w
(j)
x,k+l∑i−1

l=0 w
(j)
y,k+l∑i−1

l=0 w
(j)
z,k+l


 ,
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where min and max have to be computed row-wise. The com-
putation of these minimum and maximum values is extremely
straightforward and the resulting convex optimization problem
obtained replacing in (52) or (57) the position constraints
with the formulation in (62) can be solved at very low
computational effort.

E. Final remarks on the receding horizon control strategy

It is worth noticing that we are computing at each time
step k an open loop control law consisting of M values
uk, . . . ,uk+M−1 for the control input by solving the optimiza-
tion problem (47), which contains a probabilistic constraint
due to the presence of the stochastic wind. As a result,
uk, . . . ,uk+M−1 will depend on the stochastic wind character-
istics. Only uk will be applied and computation of uk+1 will
be performed at k+1 by solving the same kind of optimization
problem but with an updated probabilistic constraint since the
wind model is identified on-line and updated at each time
step (see Section IV-B). As a result of the receding horizon
implementation, the applied control input will depend on the
stochastic wind field actually experienced by the aircraft for
a twofold reason: wind affects the aircraft state and the wind
model adopted for control design is identified on-line based
on state measurements.

V. NUMERICAL RESULTS

In this section, we report some numerical results obtained
from simulations in which the proposed receding horizon
control strategy is applied to a 4-D trajectory tracking problem.
The reference 4-D trajectory is computed as in [11], hence, it
is feasible in nominal conditions.

Our aim is to evaluate the capability of the control strategy
to steer the aircraft and keep it close to the reference 4-D
trajectory while counteracting the action of the wind. We also
verify that the introduced approximation of the constraints do
not adversely affect the solution.
In the simulations, we suppose that the aircraft starts at the
beginning of the reference trajectory, namely x0 = [−60 −
6 6 600 600 0]T (positions are in km, velocities in km/h)
and perform 900 steps with a sample time Ts = 2s. We set
the prediction horizon M = 20, and the weights in the cost
function (46) equal to Rc = diag(0.125, 1, 0.25), µld = 0.72,
µLc = 8, µlc = 6, µvc = 6, µud = 0.72, µLd = 0.72, µvd =
0.72.

Simulations are run by applying to the original nonlinear
model of the aircraft (1) (with the mass dynamics neglected)
the original control inputs (AoA, bank angle, and engine
thrust) as derived from the designed new inputs (Cartesian
components of the aircraft acceleration with respect to the air)
through the state feedback linearizing control law in Section
III.

We adopt the formulation in (57), where N = 59 is chosen
according to (58) with ε = 0.1. N ′ is set equal to N .

The system parameters and the bounds for the constraints on
physical limitations and passenger comfort are set as follow:
Vmax = 910 km/h, Vmin = 600 km/h, Tmax = 2 · 276 kN,
Tmin = Tmax/200, φ̄ = 40◦, γmax = 5◦, γmin = −3◦,

aL = 2 ft/s2 = 0.6 m/s2, aZ = 5 ft/s2 = 1.5 m/s2, m =
150 103 kg, S = 0.28 103 m2, Cd = 0.026, Cl = 0.24,
b1 = 12.6, b2 = 377, a = 59. The stochastic wind random
field parameters are set as: σ1 = 6 10−4, σ2 = 1.6 10−5,
σ3 = 1.5 10−4, k(z) = z

3 +5, σ1z = 6 10−4, σ2z = 1.5 10−4,
σ3z = 1.6 10−5, kz(z) = 0.5( z3 + 5).

Simulation results are reported in Figure 1, where a 3-D
view of the actual trajectory of the aircraft, along with the
reference trajectory, is depicted.

The control strategy has been implemented in MATLAB
equipped with an IBM ILOG CPLEX solver, [36], running
on a desktop pc with two Intel Xeon E5-2630 2.30 GHz pro-
cessors and 64Gb of RAM: the resolution of the optimization
problem with a finite horizon M = 20 requires about 0.3 s.
The computational time can be further reduced by means of an
embedded implementation and problem-specific solvers, such
as FORCES, [40].
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Fig. 1: Aircraft trajectory: receding horizon solution (blue
stars) and reference trajectory (red circle).

In Figure 2, the finite horizon solution computed at each step
is plotted together with the receding horizon solution and the
reference trajectory. The reference trajectory is well tracked by
the aircraft, and, moreover, the original constraints are satisfied
all along the aircraft trajectory. Though the approximation
introduced to attain convexity hampers the finite horizon solu-
tions to make fast turn, it appears that this approximation does
not adversely affect the actual behavior of the aircraft, thanks
to the beneficial effect of the receding horizon implementation.

In Figure 3 the values for h?L,k, h?l,k, and h?v,k are reported
together with the position error |ξk|. As one can see, the
position error keeps almost always below 100 m and it is
usually even smaller especially on the normal and vertical
components. The computed bounds h?L,k, h?l,k, and h?v,k are
quite close to the actual position error: it results that the first
step position constraint is violated, namely |ξk| is greater than
the corresponding bound [h?L,k h

?
l,k h

?
v,k] computed at time

k − 1, only for 5.2% of the steps.
In Figure 4 the actual wind values along the aircraft tra-

jectory are reported, together with some of the wind sample
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Fig. 2: Aircraft trajectory: receding horizon solution (blue
stars) and reference trajectory (red circle) together with the
finite horizon solutions obtained at each time step (colored
squares).

realizations used in the solution of the finite horizon optimiza-
tion problems. The wind samples are obtained by simulation
of the three recursively identified 3rd-order AR models, as
described in Section IV-B, while the actual wind encountered
by the aircraft is generated according to the forecast and to
the random field as described in Section II-B.

We also run a simulation where wind acts on the aircraft but
it is not accounted for when computing the receding horizon
control strategy, namely w is set equal to zero in the finite
horizon optimization problem. The resulting position error ξ
is compared with the one obtained by accounting for the wind
in Figure 5. The position error obtained without accounting
for the wind is greater than the one obtained accounting for
the wind presence in the optimization problem. Quantitatively.
the sum along the time horizon of length 900 of the absolute
value of the error in the three spatial coordinates is [60.47
27.40 7.80] versus [8.74 2.98 0.93].

Note that Figures 1–5 refer to a single wind realization,
but they are in fact representative of the behavior observed
in multiple runs of the algorithm. To better validate our
approach, we next compute a bound on the position error
that is guaranteed to hold along the whole trajectory with
high probability with respect to the wind realizations. We also
determine the probability distribution of the largest position
error over the whole trajectory as obtained via multiple runs
with different wind realizations.

A. Validation

By means of the proposed approach, we find bounds hL,
hl, hv on the position error ξ that change at every time step,
and that, of course, depend on the particular wind realization
used in the simulation. Our aim is to validate the performance
of the controller finding a bound hp on the position error that
is guaranteed to hold along the whole considered trajectory
with high probability with respect to the wind realizations.
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Fig. 3: Absolute value of the aircraft position error ξk in black
and h?L,k, h?l,k, h?v,k in green (top plots) and corresponding
differences (bottom plots).

The computation of such a bound hp can be addressed by
means of a chance-constrained optimization problem:

min
hp

hp subject to: (63)

P{max
k
‖ξk(w)‖2 ≤ hp} ≥ 1− εv.

The value of hp achieved solving (63) represents a probabilis-
tic bound on the maximal distance between aircraft position
and reference trajectory. Problem (63) can be solved again
using the scenario theory: the bound hp can be computed
simply performing Np simulations in which the aircraft is
controlled by means of the developed controller applied in
a receding horizon fashion for a given reference trajectory,
considering different wind realizations. Then we take hp =

maxj=1...Np{maxk ‖ξk(w)‖(j)2 }. The number Np of simula-
tions should be chosen according to (53) to achieve the desired
probabilistic guarantees for the obtained bound hp.
For the computation of the probabilistic bound hp, we set
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Fig. 4: Actual wind components along the aircraft trajectory on
their own (top plots) and together with 10 samples generated
at each time step from the latest identified AR models (bottom
plots).
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Fig. 5: Absolute value of the position error ξ obtained ac-
counting for the wind (red solid line) and neglecting it (green
dashed line) in the finite horizon optimization problem.
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(a) Behavior of ‖ξk‖2 corresponding to different wind distur-
bance realizations.
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(b) Sampled distribution of maxk ‖ξk‖2 obtained from simula-
tions with different wind disturbance.

Fig. 6: Validation of the proposed strategy.

εp = 0.05, and β = 10−6 so that it results Np = 270. Figure
6(a) plots ‖ξk(w)‖2 obtained for different simulations of 500
steps, using the same values of the parameters described above.
In most of the simulations, the position error keeps much
below the bound hp that is equal to 2.6 km. This is clear from
the obtained sampled distribution of maxk ‖ξk‖2 reported in
Figure 6(b).

VI. CONCLUSION

In this paper, we have developed a receding horizon control
strategy for an aircraft to automatically track a 4-D reference
trajectory. Constraints arising from physical limitations and
comfort requirements are explicitly accounted for while steer-
ing the aircraft along the reference trajectory and counteracting
the action of the wind. The proposed approach integrates feed-
back linearization and scenario optimization within a receding
horizon framework, which allows for achieving recursive fea-
sibility and designing a control action better tailored to the un-
certainty affecting the aircraft motion via on-line identification.
Note that the on-line identification of the wind disturbance
model allows to account also for parametric uncertainty and
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unmodeled dynamics, thus coping with the robustness issue
that is typically affecting feedback linearization, which is
based on an exact cancelation of the system nonlinearities.
The interested reader is referred to [11] where robustness of
the designed control strategy with respect to mass uncertainty
is studied and proved through intensive experiments.

The proposed approach has some potential for application
within emerging novel operational paradigms in air traffic
management based on 4-D trajectory and the concept of target
windows.
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