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Abstract— Overtaking is one of the most difficult tasks
during driving. This manoeuvre demands good skills to
accomplish it correctly. In the overtaking considering multiple
vehicles (more than a couple) is necessary to understand,
predict and coordinate future actions of the other partici-
pants. These reasons make it a significant scenario for testing
in the connected and automated driving field, with the
main goal of predicting safe future states. In this sense,
this work presents an overtaking method based on a linear
Model Predictive Control (MPC) approach, which considers
multiple participants involved in the scenario. This method
adapts dynamically the trajectory for the manoeuvre in case
of unexpected situations. Some of these changes consider
other vehicles coming on the opposite lane or variations
on participants’ driving decisions. Additionally, the system
considers passengers’ comfort, the vehicle physical constraints
and lateral actions of the vehicle decoupled of the longitudinal
ones to simplify the problem.

I. Introduction

The last couple of decades have observed a great
amount of progress in the field of Advanced Driver-
Assistance Systems (ADAS). Those have been boosted
for a considerable quantity of challenges, projects and
initiatives from public and private sectors. The common
aim of most of them is to improve people’s mobility,
progressively demanded compared to previous periods
[1].

Some of these improvements, addressing people mo-
bility, have been done in the direction of: increasing
passengers’ comfort and safety while reducing travelling
time. In the case of vehicular safety must be reached high
level (difficult) requirements and standards. In the past,
these standards have been satisfied using passive systems
such as seat-belts and airbags, but currently, some ADAS
systems can be chosen to reach fail operational level
of automotive standards [2]. Some examples are driv-
ing conditions detection, potential hazardous situation
detection, automated lighting, automated braking, lane
departure warnings, blind spot detection, etc [3].

As a natural evolution of the ADAS, automated driv-
ing is gaining more interest in automakers and vehicle
users, incorporating the concepts of complete automated
control and cooperation during the driving process [4].
Even if the concept of automated driving goes back
to 1980s with the demonstrations of Carnegie Mellon
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University with their NavLab vehicles, the attention in-
creased with the demonstrations of the DARPA challenge
in 2004, 2005 and 2007 [5].

In all these years, some of the advances developed
on automated driving have been related with vehicle
lateral and longitudinal controllers [6], management of
communication of vehicles and infrastructure [7], path
planning for defined environments and static obstacles
[8], and some challenging manoeuvres, like overtaking,
under controlled and specific scenarios [9]. The over-
taking scenario is the main goal of this work, using
connected vehicles to achieve more safety during the
manoeuvre.

Our approach considers the problem stated on figure
1, that is the existence of a collision if the trajectory
planned does not consider the upcoming vehicle and
variations on the participants’ future decisions at any
time. It is proposed a MPC solution to resolve the
problem considering a lineal model (point-mass) and con-
strains related to passengers’ comfort, safety (prevention
of frontal and backward collisions) and vehicle dynamics.
Additionally, it is considered that the information of
position, speed, acceleration and angles, of the other
participants, are broadcast by V2X (simplifying the task
of modelling participants’ future states).

Fig. 1: Collision XY plane vs time.

The current work will be organized as follows: section
II presents a brief review of the automated overtaking
manoeuvre and the approaches made considering safety.
Section III explains the platform used for integrating
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and testing the overtaking approach. In section IV
is explained the Model Predictive Planning overtaking
method for multiple actors achieved in this work. In
section V is included some of the scenarios and test
cases executed on a high fidelity simulator (highly
precise dynamic vehicular modelling); and finally, the
conclusions and future works are explained.

II. Basis of automated overtaking

Overtaking is one of the most challenging and haz-
ardous manoeuvres on the driving process. It decreases
the time of moving from one location to other, which
sometimes is affected by the impact of vehicles at low
speeds (traffic jam), and has a direct positive impact in
the comfort of the passengers, keeping the desire speed
[10]. Hence, overtaking helps to arrive to the destination
faster, but increasing risks.

The work of [11] shows that risky situations under
driving process are directly linked with higher possibil-
ities to be involved in an accident, as it is the case for
lane changes and overtaking. The percentage of accidents
produced during the overtaking is between 4 and 10 %,
where the main factor is faulty decisions taken while
making the manoeuvre [12], [13].

Overtaking, classically, is separated in 3 different
stages: i) A first lane change to the opposite side of
the road, ii) The overtaking process and iii) A returning
to the original lane [10]. This separation permits to solve
the problem easier than just one single movement, as it
is done in mobile robots with fixed obstacles.

In [14] a novel method to deal with the decision making
process under overtaking has been presented. It has been
based on Mixed Observability Markov Decision Process
(MOMDP) which is a variant between a Markov Deci-
sion Process (MDP) and a Partly Observable Markov
Decision Process (POMDP). The MOMDP is presented
as a closer method, to the vehicle dynamics reality than
the classical MDP; and it has less computation time than
the POMDP. The work considered the information com-
ing from communications V2V or perception (cameras,
LiDAR and Radars) for the motion planning strategy. It
is relevant to notice that the author highlights that the
application uses offline tables to compute the solution
of the problem. The computational complexity makes
it non-viable for real-time implementations with current
processors.

In [15] was stated a Rapidly-Exploring Random Tree
(RRT) algorithm to avoid obstacles. To accomplish the
task, a model of the vehicle and the control loop were
needed to be included in the planner. The amount of
time needed to achieve the task as well as the power of
calculation were considered large.

Some other authors have used techniques based on
intelligent control. Using fuzzy logic to control the
steering wheel under overtaking manoeuvre, as well as
obstacle avoidance process [16], [17]

III. Integration on automated vehicle control
architecture

Fig. 2: System architecture considering overtaking.

In the current section, the control architecture used
for implementing the overtaking manoeuvre will be
presented (based on [18]), including how the MPC is
integrated in it. Hence, it will be separated in two
subsections: i) the general explanation of the architecture
and its deployment based on modules, and ii) the
integration of the algorithm, giving details of which
modules are involved.

A. Control architecture
The control architecture used as base for the current

work is the one presented on [18] and it is described in
figure 2. It is a modular architecture, which integrates the
capabilities of highly precise simulations (dynamically
precise vehicle model). This architecture permits the
validation of cooperative manoeuvres using other virtual
participants with the simulation or the real automated
vehicle.

The control architecture contains the six main blocks
in automated vehicles [19], i.e. Acquisition, perception,
communication, decision, control and actuation. The
acquisition module is used for data collection of the
virtual or real sensors and the vehicle odometry. These
signals, which are measured not necessarily in physical
values, are translated; making them comprehensive for
logging and use in the next modules. The perception
will generate the detailed description of the vehicle,
and its surroundings, using the information coming from
acquisition.

The main modules involved in the cooperative over-
taking manoeuvre will be the communication, decision
and control. The first module will be responsible of
transmitting and receiving CAM messages, which con-
tain information about position, heading angle, speed
and acceleration, to be used in the MPC algorithm. The
decision module will generate trajectories that the vehicle
will follow and additionally, the approach presented in
this work is part of this module. The control part will
be divided into the lateral control that is the steering
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wheel control and the longitudinal control (throttle and
braking systems).

Lastly, the actuation module consists of the low level
control on the real platform and the assignments of
position for steering wheel, throttle and braking on the
simulated one.

B. Integration on the automated driving framework
To integrate the algorithm, the modules of decision

and control were modified so as to support the MPC
overtaking approach. The Model Predictive Overtaking
approach has been integrated in the decision module
(figure 2) to generate the reference changes in the lateral
position and the reference speed during the overtaking,
using the information obtained from the other partic-
ipants. The module generates two signals for control
that will be used with the lateral and angular error
calculations to control the vehicle.

The two signals are shown on figure 2. The first one
is the lateral error offset generated for the lane change
process under an overtaking manoeuvre and the second
one is the speed limitation for the speed reference. The
last one is passed by a selector with the ideal speed of
the path and, using as safety criteria, it is selected the
lower speed (it is supposed that the ideal speed is the
maximum of the road and it is decreased in case of a
frontal obstacle).

IV. Proposed approach
This work presents a planning method for the over-

taking manoeuvre considering n-participants (in the test
will be used 3 vehicles) in the scenario. The approach
takes into account the following premises:

1) N-participants are considered for the trajectory
generation.

2) The current ego information of each vehicle will be
obtained with V2X, and the transmitted informa-
tion will contain: position, heading angle, speed,
acceleration, and the width and length for the
vehicular physical description.

3) The manoeuvre must fit comfort criteria and phys-
ical limitations of vehicles.

4) The planned trajectory must be finished safely or
a safe state will be reached.

5) At least two lanes are considered on the path and
the right side will be at ego vehicle direction,
but nonetheless the left side is in the opposite
direction (in case of one lane, the approach cannot
be executed).

To accomplish these premises, a linear model predic-
tive control (Linear MPC) method is presented. It models
the vehicle as decoupled lateral (steering wheel) and
longitudinal (throttle and braking systems) actions to
simplify the problem and decreasing computation time.

All the time, it is solved a possible lane change, but
in case of a free lane it is not applied the manoeuvre.
For this task, the system considers future predictions of

(a) Overtaking without any blocking.

(b) Overtaking with vehicles blocking.

(c) Started overtaking and frontal vehicle

Fig. 3: Boundaries and reference in different situations

the ego vehicle (results obtained from past iteration) and
calculates other participants’ future predictions. When
obtaining a positive result (considered as no collision),
for the right lane, the lane will be kept. When there is any
participant blocking the lane (for the moment of time of
the prediction), then a lane change will be applied. In the
case of a no crashing result (positive), the lane change
will be done; whereas in the case of a crash prediction, as
it is shown in figure 1 the system will return the vehicle
to its safe lane (right side), introducing speed reduction,
avoiding the frontal crash.

The crash prediction is obtained using vehicle future
MPC predictions (in the ego vehicle) as well as the
projection of future positions for the other participants
(using motion equations). By using the information of
the width and length of each vehicle is verified that the
vehicles do not collide in future time steps.

Once it is known the possible future conditions of the
vehicle under an overtaking situation, the boundaries
and the reference will be set based on the information
obtained in the past iteration. In the figure 3a is shown
the case of having a free left lane and a blocked right lane,
where the boundaries are set in terms of being into the
lane considering the vehicle width (containing completely
the vehicle into the lane) and the reference is located in
the middle of the boundaries. In the case of figure 3b is
shown the consideration that is not possible to do the
overtaking and the right lane is blocked by a vehicle. The
boundaries are left into the right lane but the maximum
distance is limited to a maximum distance that permits
keeping a safe distance between the ego vehicle and the
frontal one. Finally figure 3c shows that the boundaries
are set to return to the original lane because there is a
blocking in the left lane. The total distance is constrained
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to avoid a collision with the frontal vehicle and keeping
a safe distance.

The longitudinal model used for the approach is based
on a triple integrator chain, that will provide speed set
points to a closed loop controller. The control loop will
correct the error obtained for the relative precision of the
model for a dynamically complex system, as a vehicle.
The model is presented in the equation 1:

dlon =

∫∫∫
Jlon(t) dt dt dt (1)

The model is a linear differential equation system,
where the involved state variables are longitudinal dis-
tance, speed and acceleration with jerk as control input.
This gives as a result the following state space represen-
tation: ḋlonv̇lon

ȧlon

 =

0 1 0
0 0 1
0 0 0

dlonvlon
alon

+

00
1

 Jlon (2)

The variable to be regulated is the speed error and it
will be set as a Quadratic Problem (QP) optimizing jerk.
The distance is used as a constraint variable to prevent
the frontal collision. Acceleration is used as another
constraint variable to set the maximum acceleration that
the system can achieve by design (max. acceleration
and max. deceleration) and lastly, the jerk is used as
a comfort parameter as it is mentioned in the work of
[20]. These statements can be summarize in the following
inequalities:

0 ≤ dlon ≤ Dvehfront

DecMax ≤ alon ≤ AccMax

JMinComfort
≤ Jlon ≤ JMaxComfort

(3)

For the lateral domain, reference changes of the lateral
offset to execute the lane change has been done using a
double integrator chain. It is shown as follows:

dlat =

∫∫
alat(t) dt dt (4)

Using the classical representation, the ODE is reduced
to a state variable vector of lateral position offset and
lateral speed (rate of change of offset) with lateral
acceleration as control input:[

ḋlat
v̇lat

]
=

[
0 1
0 0

] [
dlat
vlat

]
+

[
0
1

]
alat (5)

The solution will be given using a QP formulation
(getting the solution in all time steps), minimizing the
difference between the lateral tracking error (vehicle with
the trajectory) and the lateral offset given to execute the
manoeuvre (MPC approach). The rate of change on this
system is used as a constrained variable for the correct
tracking of the lateral controller. The lateral acceleration
constraint is used as comfort parameters for passengers
[21].

V. Test cases
The two use cases used to validate the algorithm are:

i) 3 participants with enough space to finish completely
the manoeuvre (it is not necessary to plan again the
manoeuvre), and ii) 3 participants but the system will
execute the planning again to avoid the collision during
the manoeuvre (the trajectory is planned again). Both
cases will be explained as follows.

(a) Passing. (b) Taking the other lane.

(c) Overtaking. (d) Returning.

(e) Lateral offset.

(f) Lateral error.

(g) Angular error.

(h) Vehicle and reference speed.

Fig. 4: Results of test case 1.
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A. Test case 1: Planning without adaptation
This first scenario presents 3 vehicles, where the first

is the automated vehicle (overtaking vehicle), the second
one (blocking vehicle) is the vehicle with low speed in
front of the one doing the overtaking , and the third one
is a vehicle moving in the opposite direction (opposite
lane).

Figures 4a to 4d shows the process of the automated
overtaking on 4 different time instances: i) the third
vehicle passing, ii) the first one taking the opposite lane,
iii) the overtaking process and iv) the returning. As it is
shown on that sequence the third vehicle did not affect
the process of overtaking.

The information can be validated with the control
variables where figure 4e shows the lateral offset planned
for the overtaking, without any change on the intend of
overtaking the vehicle, it continues the evolution from 0
to 5 meters of offset without any change. The value of
5 meters refers to the distance from the middle of the
starting lane to the middle of the opposite lane.

Figures 4f and 4g depict the correct following of the
lateral reference, with a lateral error elat of approxi-
mately 0.75[m] for a period of time around 3 seconds.
In other hand, the angular error eang (heading tracking
error) has presented a maximum deviation between the
vehicle heading and the angle of the reference path of
6◦ during the overtaking. Additionally, the smoothness
on the evolution of both variables could be considered
as comfort for the passengers.

Lastly, the speed remains constant after arriving at top
speed, as the manoeuvre is not affected by the oncoming
vehicle. This is, because the overtaking manoeuvre is not
affected by the vehicle in front.

B. Test case 2: Planning adapted dynamically
This test case, same as previous one, uses 3 vehicles,

where the first one is the one that is doing the overtaking
the second one is the vehicle that blocks the first one and
the third one is a vehicle in the opposite direction.

The sequence of pictures in figure 5a depict a 200
meter long road segment with two lanes, each 5 meters
wide and one for each direction. They show the evolution
of the overtaking experiment. In this test case, vehicle
1 is trying to execute an overtaking manoeuvre based
on the information arriving from vehicle 2 and the
distance towards vehicle 3 (figure 5a top part at 2
seconds). Vehicle 1 starts the overtaking manoeuvre, but
the information send by vehicle 3 induces vehicle 1 to
remain in its lane and to adapt the speed with respect
to vehicle 2 (plots between 5 and 9 seconds). After this,
vehicle 1 continues the overtaking process (from 9 to 13
seconds) until it starts the returning process (from 13 to
17 seconds), arriving to the original lane at the end (19
seconds).

Figure 5b shows the process of returning to the original
lane cause by a blockage in the opposite lane made by the
vehicle 3. This part of the manoeuvre happens between 5

(a) Time secuence for overtaking in test case 2.

(b) Lateral offset.

(c) Lateral error.

(d) Angular error.

(e) Vehicle and reference speed.

Fig. 5: Results of test case 2.

and 9 seconds, and it shows a reduction on the offset from
2 meters to less that 0.75 meters, doing a safe correction
avoiding a possible collision.

Figures 5c and 5d show the tracking of the lateral
controller, where the maximum lateral error elat is under
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0.75 meters for the tracking of the reference position. The
angular error eang is lower than 7 degrees with respect
to the angle of the path. It is relevant to notice that for
the type of control used in the experiments the lateral
and angular errors can be improved (control tuning) but
it is not the purpose of the current work.

Finally, figure 5e depicts the speed correction made by
the system under the avoidance of the third vehicle for
safety reasons. Vehicle 1 reduces the speed in order to
adapt it to the speed of vehicle 2, avoiding a potential
rear end.

VI. Conclusions

In this work, a linear model predictive planning
approach for overtaking manoeuvre, considering mul-
tiple participants conditions, has been presented. The
approach has been implemented using a dual-modular
automated driving control architecture (all the task
are grouped and categorize based on their function).
This approach is categorized as part of motion planning
(decision module) and it demands a lateral control with a
high level of robustness implemented in the architecture
to handle with the correction of errors, which are caused
by the difference between non-linear simulation model
and linear model assumed during motion planning

The MPC approach permits to predicts possible colli-
sion among multiple vehicles involved in the overtaking,
and re-calculating the speed and trajectory planned in
case of modification on participants’ states; the dynamic
replanning will keep safe conditions during driving.

The future works related to the Model Predictive Plan-
ning Approach will consider the deployment on the real
platform, testing the behaviour of the set point tracking
on the lateral and longitudinal controllers during the
manoeuvre. Lastly, user acceptance must be tested based
on the indicators: comfort, safety and interaction with
other participants in the manoeuvre.
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