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Challenges in Urban Mobility

Transportation infrastructure is being
strained by rapid urbanization.

Mobility related inefficiencies negatively
impact public health, the environment,
and general quality of life.

Moreover, advances in technology have
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Urban Mobility: Learning, Modeling, & Incentives

e Learn plausible models of human behavior and preferences, with
theoretical foundations, by drawing on "smart” infrastructure data

e Build incentive schemes & policies that promote efficient use of
transportation resources

e Make use of new technologies to develop novel ways of deploying
incentives and information
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Integrating Parking into Routing Games

There is a of the fundamental relationship between
parking related behaviors and congestion
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¢ In analyzing data from SDOT, we found data-informed queuing
models capture parking behaviors well.

e Routing games offer us a way to look at the how traffic populations
choose their paths through a road network.

We couple a queuing model for parking with classical routing games
in order to analyze the impact of parking-related behaviors on overall
congestion.
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Queue-Routing Game Abstraction

Seattle Center in Downtown Seattle
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Queuing-Routing Game Formulation—Queue Model
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Parking customers have full information and their utilities are given by

Upsik = cost of outside option

Uy, = reward /satisfaction — cost for waiting — cost for parking
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Integrating Queue Model with Routing Game

0 _— T S
e Heterogeneous drivers: through .—b@ |,.<_.\' »
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e Circling is modeled as added ,_ ______ LY i
latency in parking areas: static I._’k\.__g____'__.."
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¢ Solving for the equilibrium:

» Queue-Routing game is a Potential Game

» With linear latencies, finding the Wardrop equilibrium requires solving
a convex optimization problem.

» Socially optimal solution can be found similarly.
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Queue-Routing Game—Key Insights

We use data from Seattle and SDOT to derive queue—routing game
parameters.
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the routing cost (congestion).
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Calderone, et al. Understanding the Impact of Parking on Urban Mobility via Routing Games on Queue-Flow Networks. IEEE
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Extension 1—Designing Tolls and Parking Prices

Simultaneously design tolls on a subset of the roads and design parking
prices in order to induce more efficient, fair outcomes.

We write the tolling/pricing problem
as a bilevel optimization problem:

Seattle Center in Downtown Seattle
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e Challenge: nonlinear interaction
between slack variables and
tolls/parking prices.

~~~~~~ e Solution: reformulate as a
hybrid optimal control problem
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Extension 2—Balking via Variable Demand

gx' = max{0,ay+ B}

ﬁ |
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Key Insights

e Parking Routing with balking is also a potential game

e This framework allows us to investigate the impact of different
distributions of player characteristics on the solution
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Supermarket Game & the Value of Information

E E Value of Information: expected reduction in ex-
e oo ¢ pected waiting time due to a gain in information
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To Observe or Not to Observe

y E symmetric n— :
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Ratliff, et al. To Observe or Not to Observe: Queuing Game Framework for Urban Parking. IEEE CDC 2016
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Key Insights

Given the queuing game framework, ...

e Nash is less efficient not only in terms of
social welfare, but also more commonly
used metrics—e.g., average wait time and
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e With a cost of observing, at the social
optimum

> less than 100% of the population needs to
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> even at low traffic intensities
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e Simulations indicate there is a
between congestion —— 5w~
and occupancy when agents act selfishly.
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We are conducting studies to verify this.
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How do parking behaviors impact local congestion?
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parking queue driving queue

Fundamentally new type of multi-class queuing network in which rejec-
tions are exchanged instead of services

' Natual Question: What conditions guarantee the system is stable (peo- |

. ple eventually park & congestion does not grow w/o bound)?



Preliminary Results — Symmetric Queue—Flow Network

Thm: Network is a symmetric d-regular graph s.t. the arrival rate is
less than the parking service rate (A < u) & the road service rate is

sufficiently large (% > %) — system is stable & average wait

2 : A
time is mT.
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Dowling, Zhang, Ratliff. Stability of Queue-Flow Networks. 2017 (in prep)
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Preliminary Results — Multi-Server d—regular Networks
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Dowling, Zhang, Ratliff. Stability of Queue-Flow Networks. 2017 (in prep)
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Looking Forward

o Arbitrary network topology

> In the symmetric case, we leveraged the structure of the graph to
simplify the problem.

» Stability can be assessed by determining if a set of polynomial
equations has a real, positive solution; e.g.,

V(fi,....fu) = {common zeros of stationarity equations} C C"

VR(fis - ofn) = Vi, fu) VR £ 07

» We expect that we will be able leverage topological structure in
sub-graphs to make simplifications

» To design incentive or information dissemination policies, we need to
merge the game theoretic results with the data informed models.
» Testing and validation
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Ongoing & Future Work

I Pay or delay
Uber trips
System not working. System working
ecgesoine [ —— e e Human decision-makers are
[ “° often not perfectly
8 80 8 80
s @ 6 @ rational—reference points,
‘ - Y distortions of event probabilities,
: e 0 and risk play a significant role in
22:00 00:00 02:00‘ Ausﬂ:ﬁ: ot 220[‘:10: 22:00 00:00 02:00 .
o R GRS e decision outcomes

e Traditional rational, utility
maximization models tend not
to capture these effects,
particularly in short-horizon
decisions where there is little
time for cogitation.
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Risk in Parking & Routing—Leveraging “Information Tolls"

e We have derived new heterogenous routing game models where a
user’s type is drawn from a distribution that characterizes the risk
sensitivity in the population.

e e.g., the risk-sensitive latency for type 6

% (x,) = expected cost +degree of risk aversion - perceived delay /cost

Lo(xe)+CP(x,) i(0) 6.(0)

e Initial Insight: the larger the propoportion of risk adverse users, the
more costly it is to induce a particular set of edge flows (e.g., the
socially optimal flow)

e Goal: assess user perceptions of costs (travel delays, waiting time,
etc.) and identify where to target in order to reduce
uncertainty.
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Risk Sensitive Reinforcement Learning

e People treat gains & loses differently—losses loom larger than gains.

e Goal: leverage fine grained data about mode/route choices (collected
in Seattle, Bay Area, Los Angeles, and Nashville) in developing
(real-time) algorithms for simultaneously learning and designing
incentives in closed loop.

“Internal state” ireward
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action @
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decision-making
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e.g., u(x)= { Tk (ro—)%, x<xo or u(x) =exp(ix)
prospect theory entropic map
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