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Challenges in Urban Mobility

• Transportation infrastructure is being
strained by rapid urbanization.

• Mobility related inefficiencies negatively
impact public health, the environment,
and general quality of life.

• Moreover, advances in technology have
lead to the creation of new mobility
modes, most of which are
independently operated

• Users receive information from a variety
of sources that provide solutions
optimized for the individual without
considering system-level impacts (e.g.,
Google’s new parking feature)
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Urban Mobility: Learning, Modeling, & Incentives

• Learn plausible models of human behavior and preferences, with
theoretical foundations, by drawing on ”smart” infrastructure data

• Build incentive schemes & policies that promote efficient use of
transportation resources

• Make use of new technologies to develop novel ways of deploying
incentives and information
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Integrating Parking into Routing Games

There is a lack of understanding of the fundamental relationship between
parking related behaviors and congestion
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Simulations show network
characteristics (e.g., topology)
highly impact congestion-
occupancy relationship.

• In analyzing data from SDOT, we found data-informed queuing
models capture parking behaviors well.

• Routing games offer us a way to look at the how traffic populations
choose their paths through a road network.

We couple a queuing model for parking with classical routing games
in order to analyze the impact of parking-related behaviors on overall
congestion.
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Queue-Routing Game Abstraction
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Queuing-Routing Game Formulation—Queue Model

Parking customers have full information and their utilities are given by

Ubalk = cost of outside option

Uki = reward/satisfaction︸ ︷︷ ︸
Ri

−cost for waiting︸ ︷︷ ︸
Cw(ki+1)

ciµi

−cost for parking︸ ︷︷ ︸
Cp,i
µi
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Integrating Queue Model with Routing Game

• Heterogeneous drivers: through
traffic and potential parkers

• Circling is modeled as added
latency in parking areas: static
game model & in equilibrium
circling behavior is distributed
over edges of a parking area

• Solving for the equilibrium:
I Queue-Routing game is a Potential Game
I With linear latencies, finding the Wardrop equilibrium requires solving

a convex optimization problem.
I Socially optimal solution can be found similarly.
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Queue-Routing Game—Key Insights

We use data from Seattle and SDOT to derive queue–routing game
parameters.

• Parking pricing can be used to
manage congestion.

• Changing the price of parking
Cp can reduce overall cost in the
network.

• There exists an optimal price,
C∗p, for parking that minimizes
the routing cost (congestion).

• There is a threshold after which
Cp, can no longer be used as a
control input for congestion.
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Calderone, et al. Understanding the Impact of Parking on Urban Mobility via Routing Games on Queue-Flow Networks. IEEE
CDC 2016
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Extension 1—Designing Tolls and Parking Prices

Simultaneously design tolls on a subset of the roads and design parking
prices in order to induce more efficient, fair outcomes.

We write the tolling/pricing problem
as a bilevel optimization problem:

• Challenge: nonlinear interaction
between slack variables and
tolls/parking prices.

• Solution: reformulate as a
hybrid optimal control problem

• Add constraints derived from
policy/regulations (e.g., Seattle
parking price≤ $7/hour)
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Extension 2—Balking via Variable Demand

R R

β

α

g−1
R = max{0,αy+β}

e.g.

P(x,d) = latency︸ ︷︷ ︸∑
e

∫ xe
0

τ`e(y) dy

+ parking cost︸ ︷︷ ︸∑
p

∫ dp
0

Cp(y) dy

+ inverse ’demand’︸ ︷︷ ︸∑
p

∫ dp
0

g−1
R (y) dy

Key Insights

• Parking Routing with balking is also a potential game

• This framework allows us to investigate the impact of different
distributions of player characteristics on the solution
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Supermarket Game & the Value of Information

Value of Information: expected reduction in ex-
pected waiting time due to a gain in information

$ for Info: mean service
time, arrival rate, expected
occupancy, price, etc.

Po Pj

$ for Info: mean service
time, arrival rate, expected
occupancy, price, etc.

queue 1 queue 2 queue n

Neighborhoods

jockey

off street
parking

balk

determine equilibrium as
a function of information
determine equilibrium as
a function of information

select information
structure in order to

achieve social optimum

Ratliff, et al. IEEE CDC 2016; Calderone, et al. IEEE CDC, 2016 11 / 21



To Observe or Not to Observe

Balk Join Observe

λ βk = R− Cw(k+1)
cµ

− Cp
µ

Pb

Ub = 0

(or outside opt)

Pj

Uj = Eπk [uj(k)]

Po

Uo = Eπk [uo(k)]−Co

λ

Balk Join Observe

Pb Pj Po

Ub = 0

(or outside opt)

Uj = Eπk [uj(k)] Uo = Eπk [uo(k)]−Co

λ

µ: service rate

c: # spots

R: reward
Cp: parking cost

Cw: waiting cost

n: capacity

symmetric n–

player game

Ratliff, et al. To Observe or Not to Observe: Queuing Game Framework for Urban Parking. IEEE CDC 2016
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Key Insights

Given the queuing game framework, . . .

• Nash is less efficient not only in terms of
social welfare, but also more commonly
used metrics—e.g., average wait time and
utilization.

• With a cost of observing, at the social
optimum

I less than 100% of the population needs to
opt in to observing

I even at low traffic intensities
(arrivals/service), it is better for a
non-zero portion of the population to use
an alternative mode

• Simulations indicate there is a highly
non-linear relationship between congestion
and occupancy when agents act selfishly.
We are conducting studies to verify this.

U-District
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How do parking behaviors impact local congestion?

Thm: Suppose the network is a symmetric d-regular graph such that
the arrival rate is less than the parking service rate (λ < µ) and the

road service rate is sufficiently large ( 1
T > λ 2

d(1−λ ) where T is the travel

time). Then the system is stable and the average wait time is λ

1−λ
T.

Fundamentally new type of multi-class queuing network in which rejec-
tions are exchanged instead of services

Natual Question: What conditions guarantee the system is stable (peo-
ple eventually park & congestion does not grow w/o bound)?
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Preliminary Results — Symmetric Queue–Flow Network

Thm: Network is a symmetric d-regular graph s.t. the arrival rate is
less than the parking service rate (λ < µ) & the road service rate is

sufficiently large
(

1
T > λ 2

d(1−λ )

)
=⇒ system is stable & average wait

time is λ

1−λ
T.
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Dowling, Zhang, Ratliff. Stability of Queue-Flow Networks. 2017 (in prep)
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Preliminary Results — Multi-Server d–regular Networks

Network is a symmetric d-regular graph s.t. the arrival rate is less than
the parking service rate (λ < µ) & the road service rate is sufficiently

large
(

1
T > λ 2

d(1−λ )

)
=⇒ system is stable & average wait time is λ

1−λ
T.
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Thm: If 0 < λ < k & the road ser-
vice rate is sufficiently large, then
the system is stable. (proof idea:
if 0 < λ < k, then Descartes’ rule
of signs =⇒ ∃ a unique positive
solution to above equations)
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Dowling, Zhang, Ratliff. Stability of Queue-Flow Networks. 2017 (in prep)
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Looking Forward

• Arbitrary network topology
I In the symmetric case, we leveraged the structure of the graph to

simplify the problem.
I Stability can be assessed by determining if a set of polynomial

equations has a real, positive solution; e.g.,

V(f1, . . . , fn) = {common zeros of stationarity equations} ⊂ Cn

VR(f1, . . . , fn) = V(f1, . . . , fn)∩Rn
+ 6= /0?

I We expect that we will be able leverage topological structure in
sub-graphs to make simplifications

• Strategic sources/users
I To design incentive or information dissemination policies, we need to

merge the game theoretic results with the data informed models.
I Testing and validation
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Ongoing & Future Work

• Human decision-makers are
often not perfectly
rational—reference points,
distortions of event probabilities,
and risk play a significant role in
decision outcomes

• Traditional rational, utility
maximization models tend not
to capture these effects,
particularly in short-horizon
decisions where there is little
time for cogitation.
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Risk in Parking & Routing—Leveraging “Information Tolls”

• We have derived new heterogenous routing game models where a
user’s type is drawn from a distribution that characterizes the risk
sensitivity in the population.

• e.g., the risk-sensitive latency for type θ

`θ
e (xe) = expected cost︸ ︷︷ ︸

`e(xe)+Cp(xe)

+degree of risk aversion︸ ︷︷ ︸
gi(θ)

·perceived delay/cost︸ ︷︷ ︸
δe(θ)

• Initial Insight: the larger the propoportion of risk adverse users, the
more costly it is to induce a particular set of edge flows (e.g., the
socially optimal flow)

• Goal: assess user perceptions of costs (travel delays, waiting time,
etc.) and identify where to target information in order to reduce
uncertainty.

19 / 21



Risk Sensitive Reinforcement Learning

• People treat gains & loses differently—losses loom larger than gains.

• Goal: leverage fine grained data about mode/route choices (collected
in Seattle, Bay Area, Los Angeles, and Nashville) in developing
(real-time) algorithms for simultaneously learning and designing
incentives in closed loop.

action

reward

observation

risk sensitive

decision-making

“internal state”

e.g., u(x) =
ß

k+(x− x0)
α+ , x > x0

−k−(x0− x)α− , x≤ x0
or u(x) = exp(λx)

entropic mapprospect theory
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