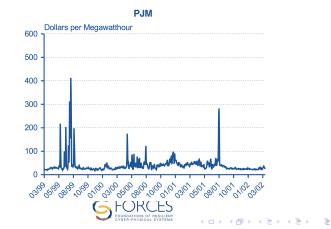


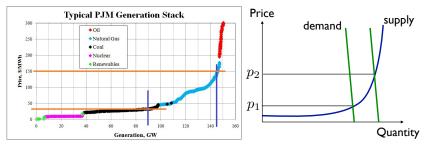
Reducing Price Volatility via Stochastic Storage Control in Power Networks

Insoon Yang Asuman Ozdaglar

Laboratory for Information and Decision Systems Massachusetts Institute of Technology



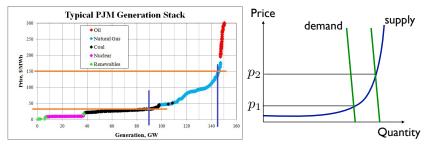
Variation in wholesale electricity prices


Average annual volatility of commodity prices [DOE, 2002]

- natural gas & petroleum: 48.5%, metals: 21.8%, agriculture: 49.1%, meat: 42.6%
- electricity: 359.8%

Reason I for high price volatility

- Steep rise in supply function
- Inelastic demand


- Unexpected fluctuation in net demand changes price a lot
- Texas: wind generation & price volatility

[Woo, Horowitz, Moore, Pacheco, 2011]

Reason I for high price volatility

- Steep rise in supply function
- Inelastic demand

- Unexpected fluctuation in net demand changes price a lot
- Texas: wind generation & price volatility

[Woo, Horowitz, Moore, Pacheco, 2011]

Reason II for high price volatility

 Locational marginal pricing: value of energy at specific location and time it is delivered

- Transmission congestion: preventing the next-cheap MW of energy from reaching all buses (price jumps occur as soon as a line is congested)
- ► NYISO: price volatility & congestion [Hadsell, Shawky, 2006]
- Will give an example later!

Disadvantages of high price volatility

Obstacle to real-time pricing: inefficient markets [Borenstein, 2005]

 Difficult to predict supplier's revenue: decelerating investments and innovations in generation technology [Gross, Blyth, Heptonstall, 2010]

 Utility's revenue risks: unstable profits, bankruptcy [Ourn, Oren, Deng, 2006]

- 日本 - 4 日本 - 4 日本 - 日本

Disadvantages of high price volatility

 Obstacle to real-time pricing: inefficient markets [Borenstein, 2005]

 Difficult to predict supplier's revenue: decelerating investments and innovations in generation technology [Gross, Blyth, Heptonstall, 2010]

 Utility's revenue risks: unstable profits, bankruptcy [Ourn, Oren, Deng, 2006]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Disadvantages of high price volatility

 Obstacle to real-time pricing: inefficient markets [Borenstein, 2005]

 Difficult to predict supplier's revenue: decelerating investments and innovations in generation technology [Gross, Blyth, Heptonstall, 2010]

Utility's revenue risks: unstable profits, bankruptcy [Oum, Oren, Deng, 2006]

- Reduce intraday *price volatility* while minimizing generation costs by shifting energy
 - across time: energy storage
 - across space: transmission network
- Optimal decision making under uncertainty in *net demand* (= demand - renewables)
 - distributional information of net demand

- Reduce intraday *price volatility* while minimizing generation costs by shifting energy
 - across time: energy storage
 - across space: transmission network
- Optimal decision making under uncertainty in *net demand* (= demand - renewables)
 - distributional information of net demand

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Advantages and findings

- Optimally shifts energy over time (via storage) and space (via transmission lines) by fully utilizing the distributional information of uncertain net demand
- Does not interfere with currently used economic dispatch rule in real-time markets: compatible with conventional electricity risk management tools
- **Small storage** can considerably reduce price volatility

- ロ ト - 4 回 ト - 4 □ - 4

Advantages and findings

- Optimally shifts energy over time (via storage) and space (via transmission lines) by fully utilizing the distributional information of uncertain net demand
- Does not interfere with currently used economic dispatch rule in real-time markets: compatible with conventional electricity risk management tools
- Small storage can considerably reduce price volatility

- ロ ト - 4 回 ト - 4 □ - 4

Advantages and findings

- Optimally shifts energy over time (via storage) and space (via transmission lines) by fully utilizing the distributional information of uncertain net demand
- Does not interfere with currently used economic dispatch rule in real-time markets: compatible with conventional electricity risk management tools
- Small storage can considerably reduce price volatility

Real-time economic dispatch

- w_i: stochastic net demand at bus (node) i
- *u_i*: power charged to storage at bus *i*

Real-time economic dispatch given storage output *u*:

$$\min_{\substack{P,\theta \\ P,\theta}} \sum_{i=1}^{n} C_i(P_i) \text{ cost minimization}$$
s.t. $P_i - w_i - u_i = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j) \text{ linearized "DC" power flow}$
 $B_{ij}(\theta_i - \theta_j) \leq L_{ij} \text{ line limit}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

u_i: power charged to storage at bus *i*

Real-time economic dispatch given storage output *u*:

$$\begin{array}{ll} \min_{P,\theta} & \sum_{i=1}^{n} C_{i}(P_{i}) & \text{cost minimization} \\ \text{s.t.} & P_{i} - w_{i} - u_{i} = \sum_{j=1}^{n} B_{ij}(\theta_{i} - \theta_{j}) & \text{linearized "DC" power flow} \\ & B_{ij}(\theta_{i} - \theta_{j}) \leq L_{ij} & \text{line limit} \end{array}$$

Locational marginal price (LMP)

KKT condition:

$$\frac{dC_i(P_i)}{dP_i} = \lambda_i \quad (\mathsf{LMP})$$

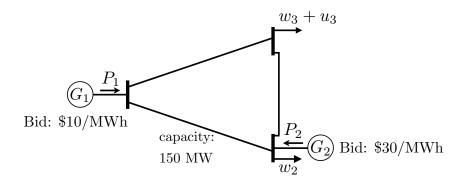
$$\sum_{j=1}^{n} B_{ij}[\lambda_i - \lambda_j + \mu_{ij} - \mu_{ji}] = 0$$
 (LMP variation over network)
 $\mu_{ij}[B_{ij}(\theta_i - \theta_j) - L_{ij}] = 0$ (complementary slackness)

ex) no network congestion:

 $\mu_{ij} \equiv 0$ no line congestion $\lambda_1 = \cdots = \lambda_n$ single price

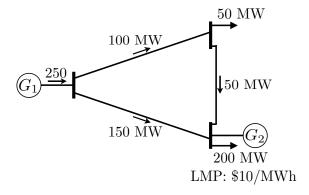
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

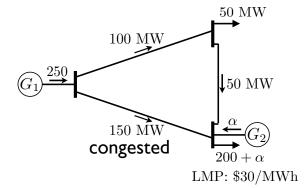
- P_i, λ_i : outcome of economic dispatch given (u, w)
- Define functions P_i and λ_i such that


 $P_i(u, w) = P_i$ $\lambda_i(u, w) = \lambda_i$

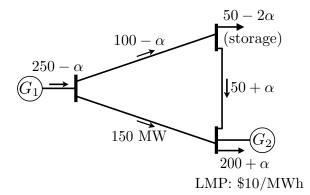
Will be used in connecting economic dispatch and stochastic storage control!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

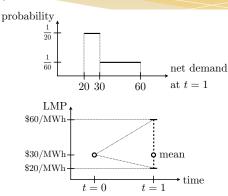

A three bus network: parameter and setting


(日)、

• Base case:
$$w_2 = 200$$
, $w_3 = 50$, $u_3 = 0$



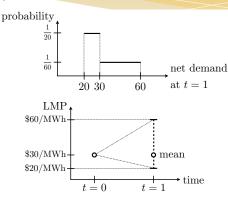
• Congestion and price jump: $w_2 = 200 + \alpha$, $w_3 = 50$, $u_3 = 0$


Canceling the price jump using storage

Net demand uncertainty and price volatility

A two stage problem

deterministic optimal control: no charing or discharging

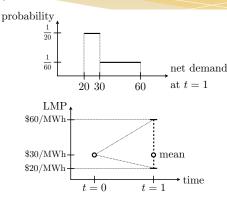

 stochastic optimal control: discharge 5MW using the distributional info., can reduce volatility by 15%

・ロト ・ 雪 ト ・ ヨ ト

Net demand uncertainty and price volatility

A two stage problem

deterministic optimal control: no charing or discharging

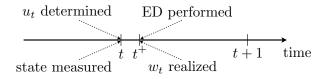

 stochastic optimal control: discharge 5MW using the distributional info., can reduce volatility by 15%

イロト 不得 トイヨト イヨト

Net demand uncertainty and price volatility

A two stage problem

- deterministic optimal control: no charing or discharging
- stochastic optimal control: discharge 5MW using the distributional info., can reduce volatility by 15%



(日)、

Connecting stochastic storage control and economic dispatch (ED)

Timeline

- States (state-of-charge, LMP) are measured
- Control action ut for energy storage is determined
- Net demand w_t is realized
- Given (u_t, w_t) , economic dispatch (ED) is performed

Storage transparently affects the market parameters through the power flow constraint: no interference with ED

Stochastic storage control

$$\min_{\mathbf{u} \in \mathbb{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}_g} C_{i,t}(\boldsymbol{P}_{i,t}(u_t, w_t)) \right] \\ + \sum_{i \in \mathcal{N}_v} \alpha_i \text{Volatility}(\{\boldsymbol{\lambda}_{i,t}(u_t, w_t)\}_{t=0}^{T-1})$$

s.t. $x_{i,t+1} = \eta_i x_{i,t} + u_{i,t}, \quad i \in \mathcal{N}_s$ storage dynamics $u_{i,t} \in \mathcal{U}_i(x_{i,t}), \quad i \in \mathcal{N}_s,$ storage ramping constraint

where

$$\begin{aligned} \text{Volatility}(q) &:= \mathbb{E}\left[\sum_{t=1}^{T-1} v(q_t - q_{t-1})\right] & \text{expected } v\text{-variation} \\ \mathcal{U}_i(\boldsymbol{x}) &:= [\max\{\underline{x}_i - \eta_i \boldsymbol{x}, \underline{u}_i\}, \min\{\overline{x}_i - \eta_i \boldsymbol{x}, \overline{u}_i\}] \end{aligned}$$

Stochastic storage control

$$\min_{\mathbf{u} \in \mathbb{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}_g} C_{i,t}(\boldsymbol{P}_{i,t}(u_t, w_t)) \right] \\ + \sum_{i \in \mathcal{N}_v} \alpha_i \text{Volatility}(\{\boldsymbol{\lambda}_{i,t}(u_t, w_t)\}_{t=0}^{T-1})$$

s.t. $x_{i,t+1} = \eta_i x_{i,t} + u_{i,t}, \quad i \in \mathcal{N}_s$ storage dynamics $u_{i,t} \in \mathcal{U}_i(x_{i,t}), \quad i \in \mathcal{N}_s,$ storage ramping constraint

where

$$\begin{aligned} \mathsf{Volatility}(q) &:= \mathbb{E}\left[\sum_{t=1}^{T-1} v(q_t - q_{t-1})\right] & \mathsf{expected} \ v\text{-variation} \\ \mathcal{U}_i(\pmb{x}) &:= [\mathsf{max}\{\underline{x}_i - \eta_i \pmb{x}, \underline{u}_i\}, \min\{\overline{x}_i - \eta_i \pmb{x}, \overline{u}_i\}] \end{aligned}$$

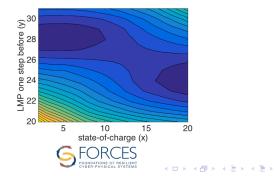
Stochastic storage control

$$\min_{\mathbf{u} \in \mathbb{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}_g} C_{i,t}(\boldsymbol{P}_{i,t}(u_t, w_t)) \right] \\ + \sum_{i \in \mathcal{N}_v} \alpha_i \text{Volatility}(\{\boldsymbol{\lambda}_{i,t}(u_t, w_t)\}_{t=0}^{T-1})$$

s.t.
$$x_{i,t+1} = \eta_i x_{i,t} + u_{i,t}, \quad i \in \mathcal{N}_s$$
 storage dynamics $u_{i,t} \in \mathcal{U}_i(x_{i,t}), \quad i \in \mathcal{N}_s,$ storage ramping constraint

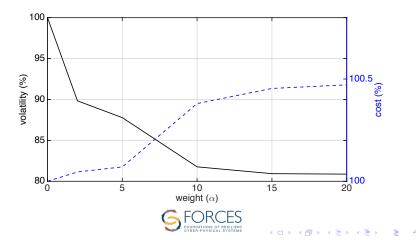
where

$$\begin{aligned} \mathsf{Volatility}(q) &:= \mathbb{E}\left[\sum_{t=1}^{T-1} v(q_t - q_{t-1})\right] & \mathsf{expected } v\mathsf{-variation} \\ \mathcal{U}_i(\boldsymbol{x}) &:= [\max\{\underline{x}_i - \eta_i \boldsymbol{x}, \underline{u}_i\}, \min\{\overline{x}_i - \eta_i \boldsymbol{x}, \overline{u}_i\}] \end{aligned}$$

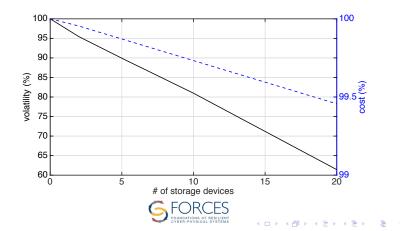

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamic programming over a lifted space

▶ New state variable: LMP at t − 1


$$y_t := [\boldsymbol{\lambda}_{t-1}(\boldsymbol{u}_{t-1}, \boldsymbol{w}_{t-1})]_{\mathcal{N}_{\boldsymbol{v}}}$$

 Convexity of value function when LMP is convex nondecreasing in storage injection


The weight (α) on volatility

 Volatility is reduced by 10%, while the increase in the generation cost is less than 0.1% (when α = 2)

The storage capacity

- 10 storage devices: 0.27% cost saving
- same setting: 19% volatility reduction

Conclusion and future directions

- Stochastic storage control method to shift energy across time and space
- Optimal decision making using distributional information of net demand
- No modification of currently used economic dispatch rule
- Effectiveness of energy storage on price volatility

Ongoing/future work

- Distributed operation of stochastic storage controllers
- Economic value of reducing price variations
- Risk management potential of storage

