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Variation in wholesale electricity prices

Average annual volatility of commodity prices [DOE, 2002]

I natural gas & petroleum: 48.5%, metals: 21.8%, agriculture:
49.1%, meat: 42.6%

I electricity: 359.8%



Reason I for high price volatility

I Steep rise in supply function

I Inelastic demand
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Reason II for high price volatility

I Locational marginal pricing:
value of energy at specific location and time it is delivered

I Transmission congestion:
preventing the next-cheap MW of energy from reaching all
buses
(price jumps occur as soon as a line is congested)

I NYISO: price volatility & congestion [Hadsell, Shawky, 2006]

I Will give an example later!



Disadvantages of high price volatility

I Obstacle to real-time pricing:
inefficient markets [Borenstein, 2005]

I Difficult to predict supplier’s revenue:
decelerating investments and innovations in generation
technology [Gross, Blyth, Heptonstall, 2010]

I Utility’s revenue risks:
unstable profits, bankruptcy [Oum, Oren, Deng, 2006]
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Our approach: stochastic storage control

I Reduce intraday price volatility while minimizing generation
costs by shifting energy

I across time: energy storage
I across space: transmission network

I Optimal decision making under uncertainty in net demand
(= demand − renewables)

I distributional information of net demand
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Advantages and findings

I Optimally shifts energy over time (via storage) and space
(via transmission lines) by fully utilizing the distributional
information of uncertain net demand

I Does not interfere with currently used economic
dispatch rule in real-time markets:
compatible with conventional electricity risk management
tools

I Small storage can considerably reduce price volatility
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Real-time economic dispatch

I wi : stochastic net demand at bus (node) i

I ui : power charged to storage at bus i

Real-time economic dispatch given storage output u:

min
P,θ

n∑
i=1

Ci (Pi ) cost minimization

s.t. Pi − wi − ui =
n∑

j=1

Bij(θi − θj) linearized “DC” power flow

Bij(θi − θj) ≤ Lij line limit
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Locational marginal price (LMP)

KKT condition:

dCi (Pi )

dPi
= λi (LMP)

n∑
j=1

Bij [λi − λj + µij − µji ] = 0 (LMP variation over network)

µij [Bij(θi − θj)− Lij ] = 0 (complementary slackness)

ex) no network congestion:

µij ≡ 0 no line congestion

λ1 = · · · = λn single price



Function representation of economic dispatch

I Pi , λi : outcome of economic dispatch given (u,w)

I Define functions Pi and λi such that

Pi (u,w) = Pi

λi (u,w) = λi

I Will be used in connecting economic dispatch and
stochastic storage control!



Network effect on price jumps

I A three bus network: parameter and setting
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Network effect on price jumps

I Base case: w2 = 200, w3 = 50, u3 = 0
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Network effect on price jumps

I Congestion and price jump: w2 = 200 +α, w3 = 50, u3 = 0
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Network effect on price jumps

I Canceling the price jump using storage
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Net demand uncertainty and price volatility

I A two stage problem
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I deterministic optimal control: no charing or discharging

I stochastic optimal control: discharge 5MW
using the distributional info., can reduce volatility by 15%
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Connecting stochastic storage control and economic
dispatch (ED)

I Timeline

I States (state-of-charge, LMP) are measured
I Control action ut for energy storage is determined
I Net demand wt is realized
I Given (ut ,wt), economic dispatch (ED) is performed

ut determined

state measured wt realized

ED performed

timet t + 1t+

I Storage transparently affects the market parameters through
the power flow constraint: no interference with ED



Stochastic storage control

min
u∈U

E

T−1∑
t=0

∑
i∈Ng

Ci ,t(Pi ,t(ut ,wt))


+

∑
i∈Nv

αiVolatility({λi ,t(ut ,wt)}T−1t=0 )

s.t. xi ,t+1 = ηixi ,t + ui ,t , i ∈ Ns storage dynamics

ui ,t ∈ Ui (xi ,t), i ∈ Ns , storage ramping constraint

where

Volatility(q) := E

[
T−1∑
t=1

v(qt − qt−1)

]
expected v -variation

Ui (x) := [max{x i − ηix , ui},min{x i − ηix , ui}]
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Dynamic programming over a lifted space

I New state variable: LMP at t − 1

yt := [λt−1(ut−1,wt−1)]Nv

I Convexity of value function when LMP is convex
nondecreasing in storage injection



The weight (α) on volatility

I Volatility is reduced by 10%, while the increase in the
generation cost is less than 0.1% (when α = 2)
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The storage capacity

I 10 storage devices: 0.27% cost saving

I same setting: 19% volatility reduction
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Conclusion and future directions

I Stochastic storage control method to shift energy across time
and space

I Optimal decision making using distributional information of
net demand

I No modification of currently used economic dispatch rule

I Effectiveness of energy storage on price volatility

Ongoing/future work

I Distributed operation of stochastic storage controllers

I Economic value of reducing price variations

I Risk management potential of storage


