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Learning dynamics in the routing game

I Routing games model congestion on networks.
I Transportation, communication networks
I Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to model
decision dynamics (learning).

I A realistic model for decision dynamics is essential for prediction, optimal
control.
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Congestion games
Routing game

I Player k drives from source to destination node
I Chooses path from Ak

I Mass of players on each edge determines cost on that edge.
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Figure : Routing game

[3]Walid Krichene, Benjamin Drighès, and Alexandre Bayen. On the convergence of no-regret
learning in selfish routing.
In 31st International Conference on Machine Learning (ICML). JMLR, 2014
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Online learning model
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[4]Walid Krichene, Syrine Krichene, and Alexandre Bayen. Efficient Bregman projections onto
the simplex.
In 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 2015
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Online learning model
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Estimation of learning dynamics
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Estimation of learning dynamics

I We observe a sequence of player decisions (x̄ (t)) and losses (¯̀(t)).
I Can we fit a model of player dynamics?

Mirror descent model
Estimate the learning rate in the mirror descent model

x (t+1)(η) = argmin
x∈∆Ak

〈
¯̀(t), x

〉
+

1
η
DKL(x , x̄ (t))

Then d(η) = DKL(x̄ (t+1), x (t+1)(η)) is a convex function. Can minimize it to
estimate η(t)

k .

[6]Kiet Lam, Walid Krichene, and Alexandre Bayen. On learning how players learn: Estimation
of learning dynamics in the routing game.
In 7th International Conference on Cyber-Physical Systems (ICCPS), 2016
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Results
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Figure : Costs of each player (normalized by the equilibrium cost)
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Results
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Results
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Optimal routing with learning dynamics

Assumptions
I A central authority has control over a fraction of traffic:

u(t) ∈ α1∆A1 × · · · × αK∆AK

I Remaining traffic follows learning dynamics:
x (t) ∈ (1− α1)∆A1 × · · · × (1− αK )∆AK

Optimal routing under selfish learning constraints

minimizeu(1:T ),x(1:T )

T∑
t=1

J(x (t), u(t))

subject to x (t+1) = u(x (t) + u(t), `(x (t) + u(t)))

[5]Walid Krichene, Milena Suarez, and Alexandre Bayen. Optimal routing under hedge
response.
Transactions on Control of Networked Systems (TCNS), 2017
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Solution methods

I Greedy method: Approximate the problem with a sequence of convex
problems.

minimizeu(t)J(u(x (t−1), u(t−1)), u(t))

I Mirror descent with the adjoint method.

Adjoint method

minimizeu J(u, x)

subject to H(x , u) = 0

equivalent to
minimize J(u,X (u))

Then perform mirror descent on this function of u.
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A simple example

o d

c1(φ1) = 1

c2(φ2) = 2φ2

Figure : Simple Pigou network used for the numerical experiment.

I Social optimum: ( 3
4 ,

1
4 )

I Nash equilibrium ( 1
2 ,

1
2 )

I Control over α = 1
2 of traffic
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A simple example
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Figure : Social cost J(t) over time induced by adjoint solution (left) and the greedy
solution (right). The dashed line shows the social optimal allocation.
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A simple example
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Figure : Adjoint controlled flows (top), selfish flows (bottom). The green lines
correspond to the top path, and the blue lines to the bottom path. The dashed lines
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Application to the L.A. highway network

I Simplified model of the L.A. highway network.
I Cost functions uses the B.P.R. function, calibrated using the work of [8].

Figure : Los Angeles highway network.

[8]J. Thai, R. Hariss, and A. Bayen. A multi-convex approach to latency inference and control
in traffic equilibria from sparse data.
In American Control Conference (ACC), 2015, pages 689–695, July 2015
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Motivation
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Framework

VI(K,F ) consists in finding x ∈ K, i.e., Ax = b, x ≥ 0, such that

F (x)T ( by − x) ≥ 0, ∀ by ∈ K (1)

Examples of parametric VI’s VI(K(p),F (·, p)):

I Routing game with fixed latency functions and variable demand:

`(x)T ( by − x) ≥ 0 ∀ feasible path flow by for demand d(p) (2)

I Parametric convex optimization:

min f (x, p) s.t. x ∈ K(p) ⇐⇒ VI(K(p),∇f (·, p)) (3)

I Controller fitting, consumer behavior etc. [2, 1]

[2]A. Keshavarz, Y. Wang, and S. Boyd. Imputing a convex opjective function.
In IEEE International Symposium on Intelligent Control (ISIC), 2011
[1]Dimitris Bertsimas, Vishal Gupta, and Ioannis Paschalidis. Data-driven estimation in
equilibrium using inverse optimization.
Math. Program., pages 595–633, 2015
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Problem statement

Inputs:
I parametric polyhedron {K(p)}p
I parametric observation process g(·, p) : Rn → Rq

I N observations of equilibria z(j) := g(x(j), p(j)) + w(j), j ∈ [N]

Objective:
Impute parametric map F (·, p) and decision vectors x(j) such that

(a) x(j) is an approximate solution to VI(K(p(j)),F (p(j))).
(b) x(j) agrees with the observations z(j).

Method:
The idea is to find F (·, p) and x(j) that minimize both

(a) sum of sub-optimality gaps req of the VI’s
(b) observation residual robs :=

∑N
j=1 φ

(
g(x(j), p(j)), z(j)

)
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Formalization

Define the optimality gap for VI(K,F ):

rVI(x) = max
by ∈K

F (x)T (x− by ) (4)

Note that
I rVI(x) ≥ 0, ∀ x ∈ K
I rVI(x) ≤ ε ⇐⇒ min

by ∈K
F (x)T ( by − x) ≥ −ε
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Residual of the primal-dual system

Define residual function for x ∈ K and by ∈ Rn

rPD(x, by ) = F (x)T x− bT by (5)

Theorem [1]

The following holds for any ε ≥ 0 and x ∈ K

rVI(x) ≤ ε ⇐⇒ ∃ by ∈ Rn : AT by ≤ F (x), rPD(x, by ) ≤ ε (6)

Set req =
∑

j rPD(x(j), by (j), p(j)) =
∑

j F (x(j), p(j))T x(j) − bT (p(j)) by (j)

and solve:

min
F ,x, by

weq req + wobs robs

s.t. x(j) ∈ K(p(j)), A(p(j))T by (j) ≤ F (x(j), p(j)), ∀ j
(7)

[1]Dimitris Bertsimas, Vishal Gupta, and Ioannis Paschalidis. Data-driven estimation in
equilibrium using inverse optimization.
Math. Program., pages 595–633, 2015
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Previous works

Inverse Variational Inequality formulation :

min req s.t. robs = 0, primal and dual feasibility (8)

I assumes complete and noiseless observations
I not robust to measurement errors

Bilevel programming formulation:

min robs s.t. req = 0 (9)

I difficult to solve due to bilevel structure
I KKT system as constraints pose numerical difficulties (ref)

[1]Dimitris Bertsimas, Vishal Gupta, and Ioannis Paschalidis. Data-driven estimation in
equilibrium using inverse optimization.
Math. Program., pages 595–633, 2015
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Pareto optimization
Solve the Weighted Sum Program (WSP) :

min weqreq + wobsrobs s.t. primal and dual feasible (10)

I Robust to noise or outliers with appropriate choice of φ in robs

I smoothing with penalization rPD instead of constraint rPD = 0

[7]R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods for engineering.
Struct. Multidiscip. Optim., page 369âĂŞ395, 2004



20/21

Asymptotic behavior

Let r?eq be the optimal obj. value of the inverse VI {min req s.t. robs = 0}

Let r?obs be the optimal obj. value of the BP {min robs s.t. req = 0}

Let the WSP {min weqreq + wobsrobs s.t. feasibility} with weq + wobs = 1.

Theorem [9]

Any optimal solution u? ∈ S(weq,wobs) to the WSP is such that

robs(u?) ≤ r?eq(w−1
obs − 1) ≈ r?eq(1− wobs) as wobs

≤−→ 1 (11)

req(u?)
≤−→ r?eq (uniformly) (12)

Given compactness and any sequence w (n)
obs −→ 1, there exists a sequence

{u(n)}n ∈ {S(w
(n)
eq ,w

(n)
obs)}n and a sub-sequence of it converging to a

solution to the inverse VI.

[9]Jerome Thai and Alexandre Bayen. Imputing a variational inequality or convex objective
function: a robust approach.
Journal of Mathematical Analysis and Applications, 2016
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Asymptotic behavior
Opens a new dimension for which the ’edge’ are the inverse VI and the BP.
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Thank you!
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