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» Nash equilibrium quantifies efficiency of network in steady state.

» Transportation, communication networks

System does not operate at equilibrium. Beyond equilibria, we need to model
decision dynamics (learning).

> A realistic model for decision dynamics is essential for prediction, optimal
control.
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Learning dynamics in the routing game

» Routing games model congestion on networks.

» Transportation, communication networks
» Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to model

decision dynamics (learning).
> A realistic model for decision dynamics is essential for prediction, optimal
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» Chooses path from Ay

» Mass of players on each edge determines cost on that edge.

Figure : Routing game

learning in selfish routing. FOUNDATIONS OF mesIIenT
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1: for t € N do
2: Play p ~ X,Et)
3: Discover éff)
4: Update
(t+1) _ : (t) 1
X =argmin (£, x; ) + DKL(X ka)
g xenAk < g > (t) g
5: end for

Online Learning Model

the simplex.
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for t € N do

Play p ~ X,Et)

Discover éff)
Update

Aw bR

5: end for
Online Learning Model

(t+1) _ : (t) 1
x| =argmin {£9,3) + — Dir (x, x0)
g xeaAk < g > (t) g
S e—nf(t)ff)

Sample p ~ x{* Discover é(lt)

the simplex.

NDATIONS OF RESILIENT

[4]Walid Krichene, Syrine Krichene, angelz@R@g Efficient Bregman projections onto

In 54th IEEE Conference on Decision an Ccogﬁ?;'gf'c(CDC') Osaka, Japan, 2015 4/21



1: for t € N do
2 Play p ~ X,Et)
3: Discover éff)
4 Update
(t+1) _ : (t) 1
X =argmin (£, x; ) + DKL(X ka)
g xenAk < g > (t) g
5: end for

Online Learning Model

(t+1)
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» We observe a sequence of player decisions (X)) and losses (#?)).

» Can we fit a model of player dynamics?

[6]Kiet Lam, Walid Krichene, and Alewr earning how players learn: Estimation
of learning dynamics in the routing game: mﬁg
In 7th International Conference on Cyber-Physical Systems (ICCPS), 2016 6/21



e

» We observe a sequence of player decisions (X)) and losses (#?)).

» Can we fit a model of player dynamics?

Mirror descent model
Estimate the learning rate in the mirror descent model

. 1
X (1)) = argmin <Z(t), x> + =Dy (x, &)
xeAAk n
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» We observe a sequence of player decisions (X)) and losses (#?)).

» Can we fit a model of player dynamics?

Mirror descent model
Estimate the learning rate in the mirror descent model

. 1
X (1)) = argmin <Z(t), x> + =Dy (x, &)
xeAAk n

Then d(1) = D (R, x{¥1) (1)) is a convex function. Can minimize it to

estimate 77,(:

[6]Kiet Lam, Walid Krichene, and Alewr earning how players learn: Estimation
of learning dynamics in the routing game: ms
In 7th International Conference on Cyber-Physical Systems (ICCPS), 2016 6/21
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Figure : Costs of each player (normalized by the equilibrium cost)
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Figure : Potential function f(x(0)) — f*.
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Figure : Estimated Vs. actual distribution.
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Figure : Average KL divergence between predicted distributions and actual
distributions, as a function of the prediction horizon h.
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ssumptions T ]

» A central authority has control over a fraction of traffic:
u® e 1AM X X ag AAK

» Remaining traffic follows learning dynamics:
x® € (1 —a1)A™ x - x (1 — ax)A?x

Optimal routing under selfish learning constraints

-
minimizeu(m),x(n) ZJ(X(t)7 U(t))

subject to D = (x4 4O (x4 4 Oy)

[5]Walid Krichene, Milena Suarez, and E‘SOptimaI routing under hedge

" PORe
response. 9 FOUNBATIONS OF AESILIENT
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» Greedy method: Approximate the problem wi
problems.

minimizeu(t)J(u(x(t_l), ult =y, 4y
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» Greedy method: Approximate the problem wi
problems.

minimizeu(t)J(u(x(t_l), ult =y, 4y

» Mirror descent with the adjoint method.
Adjoint method
minimize, J(u, x)

subject to  H(x,u) =0

equivalent to
minimize  J(u, X(u))

Then perform mirror descent on this function of wu.
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co(P2) = 2¢2

Figure : Simple Pigou network used for the numerical experiment.

» Social optimum: (2, 1)
» Nash equilibrium (3, 3)

» Control over a = % of traffic
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Figure : Social cost J(t) over time induced by adjoint solution (left) and the greedy
solution (right). The dashed line shows the social optimal allocation.
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Figure : Adjoint controlled flows (top), selfish flows (bottom). The green lines
correspond to the top path, and the blue lines to the bottom path. The dashed lines
show the social optimal flows x50 = (%, %)
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» Cost functions uses the B.P.R. function, ca

Figure : Los Angeles highway network.

[8]J Thai, R. Hariss, and A. Bayen. A gfitltj oach to latency inference and control
in traffic equilibria from sparse data. e F®RGES
In American Control Conference (ACC), 0f5“|53§°é§“6§§—695 July 2015 12/21



55 L L L L
0 50 100 150 200 250
7

Figure : Average delay without control (dashed), with full control (solid), and different
values of a.
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Framework

VI(KC, F) consists in finding x € K, i.e., Ax = b, x > 0, such that

F(x)"(by —x)>0,V by €K

Examples of parametric VI's VI(IC(p), F(-, p)):
» Routing game with fixed latency functions and variable demand:
£(x)"(by —x) >0 V feasible path flow by for demand d(p)
» Parametric convex optimization:
min f(x, p) s.t. x € K(p) < VI(K(p), VF(:,p))

> Controller fitting, consumer behavior etc. [2, 1]

[2]A. Keshavarz, Y. Wang, and S. Boyd. Imputing a convex opjective function.
In IEEE International Symposium on Intelligent Control (I1SIC), 2011
[1]Dimitris Bertsimas, Vishal Gupta, a ognyi idis. Data-driven estimation in
equilibrium using inverse optimization.@?@!?@ﬁﬂ

Math. Program., pages 595-633, 2015
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Problem statement

Inputs:
» parametric polyhedron {K(p)},
» parametric observation process g(-,p) : R" — R

» N observations of equilibria z¥) := g(x!), p!)) + wU), j € [N]

Objective:
Impute parametric map F(-,p) and decision vectors x) such that
(a) xY) is an approximate solution to VI(IC(p(f ), F(pY)).
(b) xU) agrees with the observations z
Method:
The idea is to find F(-,p) and x¥) that minimize both
(a) sum of sub-optimality gaps req of the VI's
(b) observation residual rops := Zszl 10) (g(x(”7 pU))7 zU))

G, FORCES




ri(x) = max. F(x)"(x— by) (4)

Note that
> nvi(x) >0,Vxe K
< i T — -
> nvi(x) <e <= br:?len’CF(x) (by —x)>—¢

Feasible Feasible
Set K \ Set K
Xx* S
X
y-x* y-x
C:,:) FORCES
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roo(x, by ) = F(x)Tx— b7 by (5)

The following holds for any ¢ > 0 and x € K

mi(x) <e <= Fby eR”: A" by <F(x), reo(x, by ) <e (6)

Set reg =3, rep(xY), by 28 p¥)) = > F(xW, pW)7x®) — b7 (p¥)) by G)
and solve:
min Weq feq + Wobs fobs

F.x, by ) ) . . . . (7)
st. xDek(e?), AEYV)T by W < F(xW p?), v

[1]Dimitris Bertsimas, Vishal Gupta, a 01]:@ idis. Data-driven estimation in
equilibrium using inverse optimization.IC ,MDWOIS%
Math. Program., pages 595633, 2015 7 rrveienn e 17/21



e Variational Inequality forn

min req S.t.  fops = 0, primal and dual feasibility (8)
» assumes complete and noiseless observations
> not robust to measurement errors

Bilevel programming formulation:

min fops S.t. req =0 9)

» difficult to solve due to bilevel structure
» KKT system as constraints pose numerical difficulties (ref)

[1]Dimitris Bertsimas, Vishal Gupta, a@o%ﬁ@gdis. Data-driven estimation in
equilibrium using inverse optimization. Founmmons o mesiie

Math. Program., pages 595-633, 2015 cresmmsiens verens 18/21



Algorithm 1 Weighted-sum(-) Weighted sum method

1: Normalize objectives req and robs for consistent comparisons.

2: Solve with webs + Weq = 1 and weps € {0.001,0.01,0.1,0.9,0.99,0.999}

3: Check the values of 7¢q and rgps.

» Robust to noise or outliers with appropriate choice of ¢ in rops

» smoothing with penalization rpp instead of constraint rpp =

a) Data and Estimates b) Residuals
. ? S .
.
12 4 750
. .
.
. 9 500 “robs
0=== === mmmmmmm e m e o m true ereq
= = 01 250
. .
.
8 . o
Lo 90 - = =
0,999 & 3°°338
w_obs

LsvsTEMS

n
[7IR.T. Marler and J.S. Arora. Survey @&%&@ptimization methods for engineering.

Struct. Multidiscip. Optim., page 3693A5395, 2004



Let r},. be the optimal obj. value of the BP {min ropss.t. req = 0}

Let the WSP {min Weqfeq + Wobsobs S-t. feasibility} with weq + wobs = 1.

Theorem [9]

Any optimal solution u* € 8(Weq, Wobs) to the WSP is such that

_ <
Fobs(u™) < r:q(wobi — 1) & rg(1 — Wobs) as Wobs — 1 (11)
Feq(u”®) =N req  (uniformly) (12)

Given compactness and any sequence W((’g) — 1, there exists a sequence

{uy, € {S(Wég), ("))},, and a sub-sequence of it converging to a

obs
solution to the inverse VI.

[9]Jerome Thai and Alexandre Bayen. uP@R’ i nal inequality or convex objective
function: a robust approach. o0 @E"S’
Journal of Mathematical Analysis and Appllcaffc;ﬁ'scf 2016
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Thank you!
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