
CPS Software Security
Analysis and Enhancement:

A Case Study

Chao Zhang

Prof. Dawn Song

UC Berkeley

Page 2

 Dial into the OnStar system (locally), and feed it with malicious packets
(containing code), and take control of the car

 http://www.cbsnews.com/news/darpa-dan-kaufman-internet-security-60-minutes/

DARPA Hacks GM's OnStar To Remote Control A
Chevrolet Impala (Feb 2015)

Charlie Miller

Chris Valasek

http://www.cbsnews.com/news/darpa-dan-kaufman-internet-security-60-minutes/

Page 3

 Remotely control a jeep on the highway, at a speed of 70mph
 radio, music player, display
 horn, windshield wipers, brakes, seat belt, wheel steering

 https://www.youtube.com/watch?v=MK0SrxBC1xs

Hackers Remotely “Kill” a Jeep on the Highway
(July 2015)

Charlie Miller

Chris Valasek

https://www.youtube.com/watch?v=MK0SrxBC1xs

Page 4

Under the hood: Chrysler Jeep

Multimedia
System
(Linux)

“Air Bag” Separation

V850 Controller
(firmware)

Engine transmission Sensors

CAN Bus

Page 5

Under the hood: Chrysler Jeep

Multimedia
System
(Linux)

“Air Bag” Separation

V850 Controller
(firmware)

Engine transmission Sensors

CAN BusHacked

Hacked

• Motivation
• Root Cause Analysis
• Case Study
• Program Hardening

Outline

Page 7

 Malicious input

 Software vulnerability

 Exploit and take control

The Key

Multimedia
System
(Linux)Hacked

Page 8

Memory
int buf[100];

int *q = buf + input;

*q = input2;

…

(*func_ptr)();
func_ptr

How to take control?
Control-Flow Hijack Attack

shell

code

It started 50 years ago…

buf
q

execute arbitrary code!

Page 9

0

30

60

90

120

150

2004 2006 2008 2010 2012

Acrobat Firefox IE OS X Linux Average

n
u

m
b

e
r

o
f
V

u
ln

e
ra

b
ili

ti
e

s

Top Vulnerabilities in CVE Database
(Control-Flow Hijack)

year

Page 10

 Many attack vectors

 Attackers can feed inputs to software in many ways

 Vulnerabilities are inevitable

 program complexity and programmer errors

 vulnerability detection is undecidable

Can we eliminate vulnerabilities?

• Motivation
• Root Cause Analysis
• Case Study: OpenDavinci
• Program Hardening

Outline

Page 12

 What is it?
 A realtime-capable software development and runtime environment for CPS.

 Use cases

OpenDavinci

Univ. of Arizona’s AGVUC Berkeley’s AGV
CaroloCup miniature
competition 2013 & 2014

Page 13

 Sensor input
 fake sensor, replaced sensor, man-in-the-middle

 Network input
 fake CPS nodes, replaced nodes, man-in-the-middle

Attack Vector Analysis

OpenDavinci

app app…

Page 14

 Static analysis

 syntactic analysis: pattern matching

 semantic analysis: data-flow & control-flow analysis etc.

 Dynamic analysis

 smart fuzzing: feed programs with crafted inputs

 Symbolic execution

 mark program inputs as symbol, execute the program on symbol
values, and check for candidate vulnerabilities

Vulnerability Analysis: Methods

Page 15

Syntactic Static Analysis
(on OpenDavinci)

 FlawFinder

Risk Level # Warnings

5 5

4 65

3 42

2 384

1 2255

 RATS

Risk Level # Warnings

High 162

Medium 697

 All high risk warnings are false positives, confirmed manually.

 Syntactic static analysis is not sufficient to find real vulnerabilities.

Page 16

Smart Fuzzing: Method
(on OpenDavinci)

 Basic fuzzing strategy
 random mutate some bytes of the seed inputs
 special values (e.g., max, min, 0, 1, etc.)

 Smart Fuzzing
 we extend the popular fuzzer AFL
 monitor the execution of inputs, record the traversed code block information
 filter inputs that trigger new blocks, and mutate them, to explore as many

program paths as possible

Fuzzer

Input
Software

Application
Seed
Input

crash

Page 17

Smart Fuzzing: Test-flow
(on OpenDavinci)

 Compile OpenDavinci

 instrument runtime monitoring code

source
code

modified
compiler

binary
prog.

Smart
Fuzzer

Input
OpenDavinci

Clients

Seed
Input

crash

OpenDavinci
Servers

 Test OpenDavinci (distributed)

 collect runtime code block information

 mutate inputs to explore more program paths

Page 18

Smart Fuzzing: Results
(on OpenDavinci)

 Target app: odrecintegrity

Metrics Value

run time 25 hours

total execs 11.5M times

total crashes 238K

unique crashes 31

 All the crash samples can trigger the program to crash

 i.e., vulnerabilities exist

 Work-in-progress:

 verify whether these vulnerabilities are exploitable

Page 19

 Work-in-progress:

 filter out crashes that are not real bugs

Smart Fuzzing: Results
(on OpenDavinci)

 Target app: odsplit

Metrics Value

run time 25 days

total execs 2.21M times

total crashes 2.16M

unique crashes 5000+

• Motivation
• Root Cause Analysis
• Case Study: OpenDavinci
• Program Hardening

Outline

Page 21

 The question: how to protect vulnerable programs?

 too many attack vectors to stop

 vulnerability detection is undecidable

 The solution: proactive program hardening

Question & Solution

Compiler

0 (
"

0)
)

0)

Security

Policy

0)

Page 22

Our Security Policy

int *q = buf + input;

*q = input2;

…

(*func_ptr)();

Control-flow hijack Code Pointer integrity

Enforce the control-flow targets
to be intact.

Page 23

• Separate sensitive pointers and regular data

Sensitive pointers =
code pointers + indirect pointers to sensitive pointers

• Enforce sensitive pointers accesses to be safe

Separation + runtime checks

• Keep regular data accesses intact (fast)
Instruction-level safe region isolation

Code Pointer Integrity
Volodymyr Kuznetsov, László Szekeres, Mathias Payer,

George Candea, R. Sekar, Dawn Song
OSDI’2014

Code Pointer Integrity

Page 24

Guaranteed Protection (CPI):
Memory Layout

Safe memory
(sensitive pointers and metadata)

Regular memory
(non-sensitive data)

Accesses
are fast

Accesses
are safe

Safe Heap Regular Heap

Code (Read-Only)

Safe
Stack
(thread1)

Safe
Stack
(thread2) …

Regular
Stack
(thread1)

Regular
Stack
(thread2) …

Instruction-level isolation

Page 25

 Hardened the entire FreeBSD distribution…

 … and more than 100 packages

Full OS Distribution

PostgreSQL

OpenSSL

hardened

Page 26

 Compilation time evaluation

 the extra program hardening process takes a negligible time.

 File size evaluation

 all 30 hardened programs have the same size as non-hardened ones

 Work-in-progress

 performance evaluation (no sufficient benchmarks)

 security evaluation (no usable exploits)

Harden OpenDavinci with CPI

Time Original compilation CPI compilation

real 18m 45.762s 18m 50.381s

user 10m 1.032s 10m 2.336s

sys 0m 56.844s 0m 55.536s

Page 27

 Vulnerabilities are inevitable in software, including CPS software,
making them vulnerable to attacks.

 We analyzed a CPS software OpenDavinci, and found more than
30 crashes (i.e., vulnerabilities) in it.

 We proposed a lightweight program hardening solution CPI, able
to protect vulnerable programs from being attacked.

 We hardened OpenDavinci with CPI, and evaluated its overhead.

Conclusion

Thanks!
Q&A

