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Residential	Demand	Response	
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*  July	2015:	California	Public	Utility	Commission	(CPUC)	launches	Demand	
Response	Auction	Mechanism	(DRAM)	
*  Electric	utilities	PG&E,	SDG&E,	and	SCE	required	to	implement	pay-as-bid	auction	

for	Demand	Response	(DR)	capacity	
*  Demand	Response	Providers	can	bid	Proxy	Demand	Resources	directly	into	the	

wholesale	electricity	market	
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*  DRP	seeks	to	elicit	reductions	in	consumption	by	end-users	of	
electricity	through	properly	designed	monetary	incentives	

	
*  Questions	to	answer:	
*  How	do	users	respond	to	monetary	incentives	for	reduction?	
*  How	can	this	reduction	be	measured?	
*  How	heterogeneous	are	users	in	their	responses?	
*  Are	there	levers	other	than	monetary	incentives	to	elicit	reductions	

(social	comparison,	peer	effects,	…)?	

DRP	–	User	Interaction	

1/26/17	



Page	4	

*  Goal:	Estimate	the	effect	of	a		
				DR	intervention	program	in	
				California,	USA	
*  Smart	Meter	Data	of	~5,000	users	
*  Serviced	by	PG&E,	SCE,	SDG&E	
*  Hourly	Demand	Response	Events	
*  ZIP	codes	for	each	user	known	

Treatment	Effect	Estimation	
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Geographic Distribution of Users
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*  Remove	users	with	
*  …	less	than	7	months	of	time	series	data	for	consumption	
*  …	negative	consumption	values	(due	to	net	energy	metering)	
*  …	corrupt	smart	meter	readings	
*  5,000	users	-->	1,025	users	
*  Scrape	ambient	air	temperatures	at	weather	stations	provided	
by	California	Irrigation	Management	Information	System	(CIMIS,	
publicly	available)	
*  Linearly	interpolate	user-specific	temperatures	with	Vincenty’s	
formulae	(distances	on	a	sphere),	using	latitude+longitude	

Data	and	Data	Preparation	
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*  Distribution	of	lengths	of	available	consumption	time	series:	

	
*  Distribution	of	#	DR	events	across	users:	

Summary	Statistics	for	1,025	“Clean”	Users	
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*  Potential	Outcomes	Framework	[Rubin,	1974]:	
*  Each	user													is	endowed	with	consumption	time	series		 	

																														and	covariates 	 	 			
*  Treatment	and	Control	times:	

*  																									is	treatment	indicator		
*  Treatment	and	control	data:	

Estimating	the	Counterfactual	
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i 2 I
yi = {yi1, . . . , yi⌧} Xi = {xi1, . . . ,xi⌧}

Dit 2 {0, 1}

Ci = {t 2 T | Dit = 0}
Ti = {t 2 T | Dit = 1}

Di,t = {(xit, yit) | t 2 Ti}
Di,c = {(xit, yit) | t 2 Ci}
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*  One-sample	estimate	of	treatment	effect:	

*  User-specific	Individual	Treatment	Effect	(ITE):	

*  Unconfoundedness	of	Treatment	Assignment	Mechanism:	

*  Average	Treatment	Effect	on	the	Treated	(ATT):	

Estimating	the	Counterfactual	(cont’d.)	
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�it(xit) = y1it(xit)� y0it(xit) 8 i 2 I, t 2 T

�i := EXiEt2T [(y
1
it � y0it) | xit] =

1

|Ti|
X

j2Ti

(y1ij � y0ij)
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it) ? Dit | xit 8i 2 I, t 2 T

ATT = Ei2I [�i] =
1

|I|
X

i2I

1

|Ti|
X

t2Ti

(y1it � y0it)
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*  Fundamental	Problem	of	Causal	Inference	[Holland,	1986]:	

*  Estimate	counterfactuals	with	outcome	model:	

*  Fit	conditional	mean	function	on	control	data		
*  Estimate	counterfactual	by	evaluating	
*  Regression	models	used:	
*  Ordinary	Least	Squares	Regression	(+L1,	L2	penalized)	
*  K-Nearest	Neighbors	Regression	
*  Decision	Tree	Regression	+	Random	Forest	Regression		

Estimating	the	Counterfactual	(cont’d.)		
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yit = y0it +Dit(y
1
it � y0it) 8 t, 8 i 2 I

yit = fi(xit) +Dit · �it(xit) + "it

Di,c

f̂i(xit), t 2 Ti
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*  Naive	differences	in	means	between	treatment	outcomes	and	
estimated	counterfactuals	is	highly	sensitive	to	outliers	
*  Robust	estimation	of	treatment	effect	with	Hodges-Lehmann	
Estimator:	

*  Hodges-Lehmann	Estimate	is	associated	with	Wilcoxon	Signed	
Rank	Test.	Can	construct	coverage	probabilities	for	confidence	
intervals	of							and	p-values	for		

Nonparametric	Estimation	
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�̂i = median(Zi)

zit = y1it � ŷ0it, t 2 Ti
Zi := {(ziT [t] + ziT [u])/2 | 1  t  u  |Ti|}

�̂i

H0 : �̂i = 0, H1 : �̂ 6= 0
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Simulation	Results	–		
Control	and	Semisynthetic	Data	
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*  One-Sample	Prediction	Errors:	

*  Mean	Absolute	
				Percentage	Error:	
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Simulation	Results	–		
Control	and	Semisynthetic	Data	(cont’d.)	
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*  Simulate	user	responses	on	control	data,	then	recover	responses	
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*  Estimates	on	469	users	with	at	least	10	DR	events:	
*  78.6%	of	users	reduce	
				consumption	
*  ATT	estimate:	-0.12	kWh	or	
				10.5%	of	mean	consumption	
*  Conditional	on	reducers:	
				-0.19	kWh	or	15.3%	of	mean	
*  For	90%	significance	level:	
*  32.8	%	significant	reducers	
*  45.8%	non-significant	reducers	
*  19.9%	non-significant	increasers	
*  1.5%	significant	increasers	

Simulation	Results	–		
Treatment	Data	
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*  Conditional	ATT	on	Hour	of	the	Day:	

*  Conditional	ATT	on	Geography:	

Simulation	Results	–		
Treatment	Data	(cont’d)	
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*  Estimated	Treatment	Effects	of	a	Residential	Demand	Response	
Program	in	California	
*  10.5%	reduction	/	0.12	kWh	per	event	and	user	

*  Next	steps:	
*  Randomized	Control	Trial	(RCT)	as	an	experimental	“gold	standard”	

to	verify/falsify	estimated	reductions	
*  Analyze	heterogeneity	of	treatment	population	with	respect	to:	
*  Extent	of	home	automation	
*  Social	effects	(e.g.	teams	of	users,	moral	suasion)	
*  Targeting	the	“right”	users	to	maximize	DRP	profit	

*  Mechanism	Design	formulation	for	DR	elicitation	
*  Exploration	of	DRP	–	Market	Interaction:	Profit-maximizing	bids?	

Discussion	&	Conclusion	
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																										THANK	YOU!	
																								QUESTIONS?	
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