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“Renewable electricity companies in
Europe reportedly were targeted by
Sitarion cyberattackers at a clean power web-
site from which malware was passed
to visitors, thus giving the attackers
access to the power grid.”
- Richard J. Campbell, Cybersecurity
Issues for the Bulk Power System.
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Defender-Attacker-Defender Problem

(Stage 1 ) (Stage 2 | (Stage3 )
Defender secures a Attacker comprises || Defender responds by
subset of DER nodes a subset of non- DER control and

secure DER nodes Y, partial load shedding

Three-Stage Stackelberg Game

@ Defender makes a security investment into a subset of DER nodes,
making them non-vulnerable to compromise

o Attacker executes a resource-constrained interdiction plan
(compromise DERs) to maximize the sum of loss of voltage regulation
(LOVR), load shedding (VOLL), and line losses

@ Defender optimally responds to attacker actions by:

e Controlling non-compromised DERs to provide active and reactive
power (VAR)
o Partly satisfying demand at some consumption nodes;
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Problem Statement

Find attacker's interdiction plan to maximize composite loss L(v, ¢), given
that defender optimally responds

max min L(x(¢, 0.06—
p=[8,5p2leV  ¢=[,spdled (x(¢,9))

st. x= (¢ sc,sg,S), I R
LOVR Lvr(x) = |IWO (¥ —v)i||lo
VOLL Lic(x) = [[CO (1 —7) Opc™™||1
Attacker Model sg = 6 ®sp® + (1 — §) @ sp?
Defender Model sc = v ® sc™™
Sj = Dke(joee Sk T 5+ 7
vj = vi — 2Re(%S)) + |z]?(;

Reactive power (p.u.)

Change on set-points
due to the attack
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Main Results
0.06 —
0.04 N
Theorem 3 [T
. | I
For a fixed defender action ¢ € ®, and a g o \
fixed attacker choice of DERs §, the optimal & ) ]
attacker set-point sp? is given by: 2
g ]
sp* = 0 — jsp =

0 0.02 004 006
Active power (p.u.)
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Precedence Description

Linear power flow (LPF)
State vector:
X =[p,{ sc,sg,S]eX

>

ZZk-(jkegskJrstsze'f

Ui — 2Re(2;S)) + 1zi1*t5

Figure : Precedence description of the o (Linear) LPF lower

nodes for a tree network. Here, j <; k, -bound.s alrea-dy
e=ik b=k Pj={ag.j} investigated in Steven

PP = {a}. Low et. al.

o What about linear
upper bounds?
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e—Linear power flow (e-LPF)

Net power consumed at node j: s; = s¢c; — sgj
e—Linear power flow (e-LPF)
State vector: X = [V, ¥, sc,sg, S| e X

Sj = 2k(jkyes Sk + (L +€)s

Dj D,' — 2Re(2j§j)

Assumptions

o Safety: Safety bounds are always satisfied, i.e.,
V(Y,0) el x ¥ x &, Vx(v,¢) e X, ul <v < pl.

® No reverse power flows (NRP): Power flows from the substation
node towards the downstream nodes, i.e., S > 0. This implies that
Vxe AA’, U < 19l; similarly, for NPF model.

e Small line losses (SL): The line losses are very small compared to
the power flows, i.e., Vxe X, zO /L < ¢S, where ¢ is a small
positive number.
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Attacker-Defender Problem (ADNPF)
[AD] £ = maxyew mingeo L(x(),¢)) st. xeX

Attacker-Defender Problem (ADLPF) Lower bound

[AD] £ = maxyey mingeo L(X(1,¢)) st ReX
Attacker-Defender Problem (ADUPF) Upper bound
[Kf)] L = maxyey minges L(X(¢,¢)) st. Xe€ X
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Theorem

Let (%, %), (0%, %) and (V*,$*) be optimal solutions to [AD], [K]\D]
and [AD], respectively; and denote the optimal losses by L, L, L,

respectively. Then,
~ < ulN
LLLLS L+ ——.
2u+4

@ All the results that are applicable to the LPF model are also valid for
the e-LPF model.

@ The optimal attacker strategy computed under both LPF and e-LPF
model can be shown to be the same.
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Theorem

In an optimal security strategy, over a balanced, homogeneous tree
network:

e If a node is secure, all its children nodes must be secure.
@ At most one level containing secure and non-secure nodes can exist.

@ Nodes in such a level are uniformly secured.

Figure : Security strategy u. Figure : Security strategy u?.
N.(ub) = {3,5,6,7,10,11}. No(1?) = {2,4,5,6,12, 14}
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Concluding Remarks

@ Tractable ways to do the computations using linearized models
@ Guarantees on the structural properties of the solutions
@ Results applicable to [@] and [Kﬁ] can be intra-polated.
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Other applications

The LPF and e-LPF model may be used for:
@ Placement of voltage regulators
Other loss functions such as loss of frequency regulation
Placement of storage devices
Optimal DER set-points in terms of active power curtailment

Other systems with small second-order non-linearities, e.g., water
distribution networks.
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We first prove the following result that relates x(1, ¢), X(1, ¢), and

X(¢, 9):
Proposition

For a fixed strategy profile (¢, ¢) € W x &,

Hence,
LVR(Q) S LVR<X) § LVR(E)
Lic®) = Lio(x) = Lic(®) b — L&) < L(x) < L)
Lin(X) < Lon(X) < Len(X)
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Lemma

For a fixed (¢, ¢) e ¥ x ®,

Vo o(i )€l S < —dmrr (3)

Proof.

We apply induction from leaf nodes to the root node.
Base case: For any leaf node k € NV,

SL PC
zile < €Sk = eo(Sk + Zkgk)
csi PC S

Cozily < T—e = T
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|
Now, for any j € N\N,

SL C
2il; < €05 = co] Seses Sk + 5 + zi4)]
52l < 72 Dy kyee S+ i)
Adding >’ Sk + sj on both the sides:

Ytiiee Sk + 5+ 21l < g [ Siegises Sk + 5]

o

~~ -

5
Inductive step: By inductive hypothesis (IH) on C;,

(H) . )
% < W[Zk:(j,k)eg Sk + 57
S

(. Pl = [Px| = 1).
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From Lemma 4, for any (i,j) € &,

~ ~

A < i = (14 65 = 5. (4)

J S Gy TS Tl

For nodal voltages,

<

Vj vE v — 2Re(2ij) + |Z|12£j
= Vi — 2Re(2j5j)
(4 -
i — 2Re(%)). (5)
Applying (5) recursively from the node J till root node:
- %\ VE .
Vi =z 1 — 2Zke’Pj Re(szk) = Vj.

Thus, S; < S; < Sj and Uj > v; > 1;. Furthermore,

- g NRP -
i <9< 5 S < IS < |52
I LT T BE L F<i<t
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Proof of Theorem.

For any x e &,
r(P?+Q?) HLBV.SI Sl N
Lu() = 3 ST S p < ©)
(ij)e€ = (ij)eE =
Hence,
£ = LE@*, 6*(4%))
> LE(v*, 6% (v*))) (by optimality of 1/*)
> T:(x('tli*, &5* (1™*))) (by Proposition)
(6) ~ N
> L(x(4*, 6" (V) ~ 354
N L
> L(x(4*, ¢* (")) = 5574 (by optimality of ¢*)
uhN
Similarly, one can show £ > L. O
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Concluding Remarks
e First (known) successful attempt to upper bound the power flows.

@ Results are applicable for other type of questions like placement of
voltage regulators or DERs, other loss functions including loss of
frequency regulation, etc.

@ The analysis can possibly be extended to other systems that have
second-order non-linear losses as a bounded tiny fraction of the
network flows, e.g., water networks.
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