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… are enabled by emerging industrial platforms in IoT, II and Fog 
Computing. Examples addressed by  FORCES are:

 Transportation networks

 Air traffic networks

 Energy distribution networks

 Water distribution networks

Societal-Scale CPS 

3/7/2017

• Humans are “embedded intelligent agents”, human decision making is part of 
control loops: H-CPS

• Massive societal implications  trigger conflicting societal expectations and 
policies: Policy-aware system design

• Complexity requires building systems with Learning  Enabled Components: 
High-confidence system design with components that can learn
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Modeling and Analysis of Societal-Scale CPS: 
H-CPS Framework
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Controversies created by societal-scale systems now extend to regulations, certification, 
insurance as side-effects of widespread adaptation.  Typical conflict issues are: 

 Autonomous and Mixed-Use H-CPS (human decision making, automation, social 
acceptance and liability) 

 Privacy (utility of services, costs, personal/institutional privacy)

 Resilience (design complexity, cost, dependability of services)

Example: dynamic, traffic aware routing
Driver incentive: savings in travel time + fuel
Societal gain: better road utilization
Cost: neighborhoods with increased traffic 
Who resolves the conflict?

Two sides of the solution approaches:

 Adjusting public policy to new technology

 Create technology that can be parameterized by societal context

Policy-Aware System Design
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 How to map a logical Information Architecture (components + 
information flows) on a physical Platform Architecture such that 

o Functional requirements (the information architecture)

o Performance requirements (timing)

o Security requirements (confidentiality and integrity)

are satisfied simultaneously?

FORCES: Security-Aware System-Level Synthesis

3/7/2017
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Information Architecture Deployed on a 
Physical Platform
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High-Confidence System Design with Learning-
Enabled Components
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High confidence systems require pushing the limits of 
“correct-by-construction” methods.

− Model-based Technologies
Computational models that predict properties of cyber-physical systems 

“as designed” and “as built”. 

Challenge: Develop domain-specific abstraction layers for complex CPS 

that are evolvable, heterogeneous, yet semantically sound and supported

by tools.

− Component-based Technologies 
Reusable units of knowledge (models) and manufactured components.

Challenge: Go beyond interoperability; find and introduce compositional 

frameworks where system-level properties can be computed from the 

properties of components
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Example for CPS Design Tool Suite: OpenMETA
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 Challenges:

a. How to guarantee system-level safety/security properties?

b. How to identify those system components/behaviors in an 
overall H-CPS architecture that best be implemented using 
learning/adaptive methods?

c. How to make tradeoff between design-time invariant models, 
design-time learning/adaptation and operation-time 
learning/adaptation?

d. In learning/adaptive components what is reusable across 
different systems? 

What Are the Problems With Learning Enabled 
Components?

3/7/2017
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Reframing the Model-based Design Approach
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Example: Design-time Evidence for Preserving 
Stability
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 Physical Architecture: Passivity-based design
 Method: Passivity-based design (e.g. Proc. IEEE,Vol.100 No.1, pp. 29-44, 2012 )

Outcome: Decouples  effects of time varying delays on stability caused by computation and networking effects

 Sztipanovits, J., “Dynamic Backpropagation for Neural Network Controlled Resonator-Banks,” IEEE Transactions on 
Circuits and Systems, Vol. 39, No.2, pp. 99-108

 SW & Platform: TTA/TTP
 Guaranteed deadlock freeness

 Bounded delay

 Tradeoff between performance and verification complexity

Structurally passive learning enabled dynamics 
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Example: Embedded Safe Learning
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 Safe Learning
 Method: Learn unkown dynamics based on a Gaussian Process Model and iteratively approximate the 

maximal safe set Passivity-based design 
Tomlin et al: Reachability-based safe learning with Gaussian Processes. Proc. 53rd CDC 2014
Chen, Fisac, Sastry, Tomlin: Safe sequential path planning via double obstacle Hamilton Jacobi Isaacs 

variational inequalities. ECC 2016
Outcome: Safety is guaranteed during the learning process

 Learning approaches: 
 Gaussian process model

 Deep Neural Nets
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 Models of learning-enabled CPS components whose behavior is 
bounded and composable in open CPS architectures

 Guarantees for Closed Loop Performance of learning-enabled  
CPS components

 Real time metrics for the performance of learning algorithms

 Extending model-based design methods with precise 
representation and utilization of partial (but bounded) models in 
design flows

 Evidence-based assurance argumentation methods that  can 
handle both probabilistic and deterministic methods

 Integrated tool chain and model-based design flow that 
incorporates learning enabled components

Many Open Problems

3/7/2017
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 Societal-scale CPS are enabled by the new platforms: IoT, II and 
Fog

 Impact of these systems requires new architecture, offer new 
capabilities and create new challenges:

 H-CPS

 Policy-aware architectures

 H-CPS with Learning Enabled Components

 Achieving progress in these areas defines the next decade for 
CPS research

Summary
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