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Societal-Scale CPS
\

... are enabled by emerging industrial platformsin loT, Il and Fog
Computing. Examples addressed by FORCES are:

+ Transportation networks

« Air traffic networks

+ Energy distribution networks
+ Water distribution networks

Humans are “embedded intelligent agents’, human decision making is part of
control loops: H-CPS
Massive societal implications trigger conflicting societal expectations and

policies: Policy-aware system design
Complexity requires building systems with Learning Enabled Components:
High-confidence system design with components that can learn
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Physical Systems/Resources

Incentive engineering
Mechanism design
Game Theory

Functional design
Information flows
Security constraints
Platform mapping
Timing constraints

Platform Services

Physical dynamics
Platform properties
Resource constraints

Approach: Model and Component based design
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Policy-Aware System Design

Controversies created by societal-scale systems now extend to rws, certification,
insurance as side-effects of widespread adaptation. Typical conflict issues are:

+ Autonomous and Mixed-Use H-CPS (human decision making, automation, social
acceptance and liability)

+ Privacy (utility of services, costs, personal/institutional privacy)

+ Resilience (design complexity, cost, dependability of services)

Example: dynamic, traffic aware routing
Driver incentive: savings in travel time + fuel
Societal gain: better road utilization
Cost: neighborhoods with increased traffic
Who resolves the conflict?
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FORCES: Security-Aware System-Level Synthesis

\A

* How to map a logical Information Architecture (components +
information flows) on a physical Platform Architecture such that

o Functional requirements (the information architecture)
o Performance requirements (timing)
o Security requirements (confidentiality and integrity)

are satisfied simultaneously?
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High confidence systems require pushing the limits of
““correct-by-construction” methods.

— Model-based Technologies

Computational models that predict properties of cyber-physical systems

“as designed” and “as built”.

Challenge: Develop domain-specific abstraction layers for complex CPS
that are evolvable, heterogeneous, yet semantically sound and supported

by tools.

- Component-based Technologies

Reusable units of knowledge (models) and manufactured components.
Challenge: Go beyond interoperability; find and introduce compositional
frameworks where system-level properties can be computed from the
properties of components
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What Are the Problems With Learning Enabled

Components?
e

+ Challenges:
2. How to guarantee system-level safety/security properties?

b.  How to identify those system components/behaviors in an
overall H-CPS architecture that best be implemented using
learning/adaptive methods?

c. How to make tradeoff between design-time invariant models,
design-time learning/adaptation and operation-time
learning/adaptation?

c. Inlearning/adaptive components what is reusable across
different systems?
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Example: Design-time Evidence for Preserving

Stability
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Structurally passive learning enabled dynamics

* Physical Architecture: Passivity-based design

“  Method: Passivity-based design (e.g. Proc. IEEE,Vol.100 No.1, pp. 29-44, 2012)
Outcome: Decouples effects of time varying delays on stability caused by computation and networking effects

“  Sztipanovits, J., “Dynamic Backpropagation for Neural Network Controlled Resonator-Banks,” IEEE Transactions on
Circuits and Systems, Vol. 39, No.2, pp. 99-108

+ SW & Platform: TTA/TTP

+ Guaranteed deadlock freeness
*  Bounded delay

+ Tradeoff between performance and verification complexity
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Example: Embedded Safe Learning

T ~
6 Design-time verification, Operati e Operation-time
testing and learning learning and adafgtion safety monitors
N sl Pt
M somacen puicies Layers
i e | ==
. £ | s |l Rl | [
Learning g T £ T T
Enabled ||§ g A
cPs i i g
=3 o e
V gl sdsptaton |
n g 40 J s <0 gd
| s J
| Unce - P Ohcer [C s
Evidence-based Assurance Argumentation

Safe Learning

Method: Learn unkown dynamics based on a Gaussian Process Model and iteratively approximate the

maximal safe set Passivity-based design

Tomlin et al: Reachability-based safe learning with Gaussian Processes. Proc. 53 CDC 2014

Chen, Fisac, Sastry, Tomlin: Safe sequential path planning via double obstacle Hamilton Jacobi Isaacs
variational inequalities. ECC 2016

Outcome: Safety is guaranteed during the learning process

Learning approaches:

Gaussian process model
Deep Neural Nets
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Models of learning-enabled CPS components whose behavior is
bounded and composable in open CPS architectures

Guarantees for Closed Loop Performance of learning-enabled
CPS components

Real time metrics for the performance of learning algorithms

Extending model-based design methods with precise
representation and utilization of partial (but bounded) models in
design flows

Evidence-based assurance argumentation methods that can
handle both probabilistic and deterministic methods

Integrated tool chain and model-based design flow that
incorporates learning enabled components
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Summary

T ———————

 Societal-scale CPS are enabled by the new platforms: 10T, Il and
Fog

* Impact of these systems requires new architecture, offer new
capabilities and create new challenges:
= H-CPS
“ Policy-aware architectures
* H-CPS with Learning Enabled Components

* Achieving progress in these areas defines the next decade for
CPS research
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