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Motivation

* Many systems require significant interactions of automation with human
decision makers

 Objective functions can descried these decision processes
— Used to optimize system wide performance
— Used to develop decision support tools

Presentation Outline
1. Discrete choice modeling approach

2. Case study for DCM at LaGuardia Airport in New York
— Estimation of objective functions
— Using objective functions for prediction
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Decision Maker:
Air Traffic Controller

Choice Set of Runway Runway
Alternatives Config. A ig. B Config. C

Utility A Utility B Utility C

Each choice
has a utility

ility is a function
Utility is a tu U, (wind, demand, ...) Up (wind, demand, ...) Uc (wind, demand, ...)

of attributes
FORCES
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* DCM uses The Random Utility Model
— Utility of choice c; € C,, for the nt" decision maker:

Ui,n = Vint€in

Observable Component / \

* Observable Component:

Random Error Component

— Linear function of attributes: Vin=a; + Z[,Bl- . Xl-’n]
— &,B estimated via MLE

* Random Error Component: captures all forms of model error (measurement
errors, unobserved attributes, proxy variables, etc.)

— Probit model: Gaussian error term
— Logit model: Extreme value error term

@) FORCES
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Logistic Probability Unit

\/

Logit

+ Logit is more computationally tractable than Probit models
1. Has a closed form solution

2. Especially important as models get more complicated
5. Approximates the normal distribution well (fatter tails)

+ Specifically, we use a Gumbel distribution for error term with =0

Fx) = pexp(—uCx — ) - exp(— exp(ux = m))

C,FORCES
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Decision

A 4

Config. A Config. B Config.C| | Config. D Config. E

* Now choice set, €y, has J,, multiple alternatives.

« All error terms, €j,, are independent and identically distributed (i.i.d.)

f(€) = uexp(—ue) - exp(— exp(ue))

+ Closed form solution for probability
exp(1Vin)
Y jecyexp(1Vin)]

P(ilcn) =
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+ Independence of Irrelevant Alternatives (11A)

* i.i.d.errorterms
V.
PGilG,) = o p(Win)
Yjecylexp(uVjn)]
(i,j€C
PGIC) _ P(iIC) ) ij€Cy
PGIC) - P(IC) €y € Cn
kCZ cC,

Main Takeaway:
The ratio of choice
probabilities for
alternative i and j does
not depend on the
characteristics of the
other alternatives

* lIA assumption can be restrictive
*  Assumes that none of the categories can serve as substitutes
* Can produce inaccurate results
* Fails when alternatives are correlated

YSICAL SYSTEMS
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How do we overcome problems when alternative are correlated?

Q

Split model into a tree structure that allows correlation within “Nests”

A:
Decision
Nest 1 Nest 2
/ \
Config. A Config. B Config. C Config. D Config. E

* Between nests choices for i and j are independent
e Alternatives within nests are now correlated

@) FORCES
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Error terms, €, now have the following joint cumulative distribution

F(€1n,€1n -+ 5 €n) = €XP (_ 7=1 [(ZJEBS lexp (_ Z_:)D”SD

NL probabilities can be expressed as the product of two simple Logits using
conditional probabilities.

P, (1) = B, (i|By)Pc(By)
where By, is the k" nest

NL formulation will have three components
1. Lower model

2. Upper model

5. Bridge between levels

@) FORCES
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Lower Model
* Gives conditional probability of picking an alternative given a nest.
* Each nest is a simple MNL structure

. exp (i Vin)
Pn(llBk) =
Y e, exp(iVin)]
Decision

R e —— -
| “ S >
I Nest 1 L Nest 2
; /\ I |
l L ) v
I | Config. A Config.B | 1 I | Config.C Config. D Config. E

\ |

N o e e e e e e e e e o — /’ N e e e e e e e e e e e e e e e o e o — -
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Bridge

Q: The interpretability is great, but how do we link the upper and lower models?

A: Inclusive value (or inclusive utility)

— Inclusive value is the expected maximum utility

1
from each nest fen = ‘u—ln (Z , [exp(#kVi,n)]>
— Carries information from lower model to upper k JEBk
model
Decision
A_,-/ >
Nest 1 Nest 2
3 t
11 IZ
Config. A Config. B Config. C Config. D Config. E
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Upper Model
* Gives marginal probability of nest choice over all alternatives
* Inclusive value carries information into upper model
+ Upper level model is also a simple MNL model

exp (I k,n)
{‘=1[exp (I l,n)]

Pn(Ck) =

|
.

Config. A Config. B Config. C Config. D Config. E
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Multinomial Probit
Cross Nested Logit
GEV Models

Mixed Logit

Mixed Probit

Choice Set Generation
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LaGuardia Airport (LGA) in New York

Background:

+ Airport congestion leads to significant flight delays. The key driver of airport
capacity is the runway configuration. Air traffic controllers (ATC) must select
the runway configuration at a given time based on a set of operational and
meteorological conditions.

Goals:
1. Toinfer the ATC utility functions for the runway configuration decision
selection

2. To predict the runway configuration at a given time, given a forecast of
influencing factors
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LGA

General
Aviation
Terminal

arrival runways

Terminal

R1, R2 | R3, R4

,FORCES
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= Datasets were obtained from the FAA Aviation System Performance
Metrics (ASPM) database.

* ASPM data reports operational and meteorological data (wind speed,
runway configuration, demand, etc.) in 15-minute intervals.

* Model was trained on ASPM data for LGA year 2011.

* Model was tested on ASPM data for LGA year 2012.
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Runway configurations that were reported more than 1% (excluding late
evening and early morning hours) in 2011 were considered as candidate

runway configurations for the model.

Resulted in 7 candidate configurations

Configuration Frequency
31|4 6,772
22|13 5,679
22|31 4,488
413 3,325
31[31 1,483

22,31[31 820
4|4 813

5/21/2015
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LGA Runway Decision Selection at Time n

u=11 | Arrival on 22 4)13 4|4 31|31 31|4

22|13 22|31 22,31|31 = Currently, the best model
follows a nested logit structure
with alternatives that have arrivals
on runway 22 grouped into a nest.
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* Attributes that potentially drive decision
processes of air traffic controllers

Wind speed } Also affects availability Wind Rose
2. Wind direction o
2. Visibility
/. Airport arrival demand 1o
5. Coordination with surrounding
airports 180
Noise mitigation
/. Difficulty of switching around airport 150
Inertia — resistance to configuration )
switches because of operational
difficulties
Page 20 CD EQJSSH:EEESNT
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Estimated Utility Function Weights

Parameters

Inertia parameters

Config. 22|13

Config. 22|31

Config. 22,31|31

Config. 31|31

Config. 31|4

Config. 4|13

Config. 4[4

Wind parameters

High headwind on arrival runway
Normal headwind on arrival runway
Tailwind on arrival runway
Tailwind on departure runway

Tailwind on extra arrival runway

page21 | Compression effects

Value

4.58
7.41
7.41
4.91
3.16
3-99
5-44

Std. error

0.187
0.36
0.36

0.401
0.25

0.196

0.416

0.0161
0.0197
0.0199
0.0173

0.07

t-statistic

24.5
20.57

20.57
12.24

12.6
20.34
13.1

5.89
6.26

-4.74
-12.2

-4.97

5/21/2015



Parameters Value Std. error t-statistic
Demand parameters

Arrival demand: 31|31 -0.101 0.0312 -3.24
Arrival demand: 4|4 -0.0807 0.0327 -2.47
VMC/IMC parameters

VMC on 31|31 2.09 0.402 5.19
VMC on 31|4 1.36 0.231 5.9

= The low capacity runways have negative
contributions to the utility based on demand.
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Parameters Value Std. error t-statistic

Switch proximity parameters

31|4 to 31|31 -1.4 0.463 -3.03
4|13 to 31|31 -2.52 0.714 -3.53
4|4 to 31|31 -1.32 0.747 -1.77
22[13 to 31|31 -1.99 0.577 -3.45
4|13 to 31|4 -2.19 0.368 -5.94
4|4 to 31|4 -1.05 0.515 -2.04
22|13 to 31|4 -2.14 0.355 -6.04
4[13 to 4|4 -1.6 0.443 -3.61
22|13 to 4|4 -1.92 0.532 -3.6
31|31to 22|13 -1.05 0.573 -1.84

= Some runway switches are less preferable than

others.
CD FO RCES
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Estimated Utility Function Weights

Parameters Value Std. error t-statistic

Inter-airport coordination parameters

JFK arr. on 13; LGA arr. 22 [ dep. 4 0.85 0.308 2.76
JFK arr. on 13; LGA arr. 31/ dep. 13 1.27 0.464 2.75
JFK dep. on 13; LGA arr. 13 [ dep. 31 -1.99 0.224 -8.88
JFK arr. on 13; LGA arr. 4 [ dep. 22 -0.448 0.172 -2.6
JFK arr. on 13; LGA arr. 13 [ dep. 31 -1.61 0.222 -7.26
JFK arr. on 13; LGA arr. 31/ dep. 13 0.796 0.25 3.19
JFK dep. on 13; LGA arr. 13 [ dep. 31 -2.5 0.341 -7.34
JFK arr. on 13; LGA arr. 22 / dep. 4 -0.737 0.293 -2.51
JFK dep. on 13; LGA arr. 4 [ dep. 22 -1.15 0.312 -3.68

= Coordination with JFK is an important factor to the decision process
= ATC likes to align arrival and departure flows

3 FORCES
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* Very high accuracy, especially for configurations that were seen

e

Runway Configuration Frequency Accuracy
22|13 8,220 98.1%
31|4 6,454 98.4%
4]13 4,851 97.9%
2231 2,938 97.3%
31|31 2,136 96.8%
22,31|31 1,838 96.7%
4|4 795 96.7%
Total 27,232 95.3%

frequently throughout the year.
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Runway Configuration Frequency Accuracy
22|13 8,220 89.0%
31[4 6,454 84.8%
413 4,851 83.0%
22|31 2,038 71.6%
31|31 2,136 67.0%
22,31|31 1,838 67.2%
4|4 795 68.2%
Total 27,232 82.2%

* Accuracy declined by about 13%
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Utility functions were used to calculate the probabilities of picking a configuration at each time period.
Bayes rule was used recursively to forecast on a three-hour time horizon.
The configuration with the highest probability was taken as the prediction.
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Runway Configuration

Frequency

Accuracy

22,31[31

1,096
369
250
186
244

69

35

91.2%

72.1%

73.6%
57.5%
67.6%
44.9%
68.6%

2,249

79.0%

* TAF and schedule demand for LGA July 2014
* Accuracy reduced by about 3%, but was not significantly degraded.
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Discrete Choice Models

* Have the power to reduce the objective functions of human decision making
processes

+ Useful for identifying the biggest influencing factors in the decision making
process

* Inherently data-driven
« Difficulty estimating factors that are not represented in the data (as expected)

Prediction with Discrete Choice Models

* Model reaches accuracies upwards of 95% for a 15 minute horizon
* Model reaches accuracies upwards of 80% for a three hour horizon
* Forecast data does not significantly reduce accuracy of prediction
* Accuracies increase with configurations that were seen frequently
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