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Motivation 
 Many systems require significant interactions of automation with human 

decision makers 

 Objective functions can descried these decision processes

‒ Used to optimize system wide performance 

‒ Used to develop decision support tools

Presentation Outline
1. Discrete choice modeling approach

2. Case study for DCM at LaGuardia Airport in New York 

‒ Estimation of objective functions 

‒ Using objective functions for prediction 

Introduction
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Discrete Choice Framework
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Runway 
Config. A

Runway 
Config. B

Runway 
Config. C

Utility A Utility B Utility C

𝑈𝐴 (wind, demand, … ) 𝑈𝐵 (wind, demand, … ) 𝑈𝐶 (wind, demand, … )

Choice Set of 
Alternatives 

Decision Maker:
Air Traffic Controller

Each choice 
has a utility 

Utility is a function 
of attributes



Page 4

 DCM uses The Random Utility Model

‒ Utility of choice 𝑐𝑖 ∈ 𝐶𝑛 for the 𝑛th decision maker: 

𝑈𝑖,𝑛 = 𝑉𝑖,𝑛+𝜀𝑖,𝑛

 Observable Component: 

‒ Linear function of attributes:  𝑉𝑖,𝑛= 𝛼𝑖 +  𝛽𝑖 ∙ 𝑋𝑖,𝑛

‒  𝛼,  𝛽 estimated via MLE

 Random Error Component:  captures all forms of model error (measurement 
errors, unobserved attributes, proxy variables, etc.)

‒ Probit model:     Gaussian error term

‒ Logit model:     Extreme value error term

The Random Utility Model

5/20/2015

Observable Component Random Error Component
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 Logit is more computationally tractable than Probit models

1. Has a closed form solution

2. Especially important as models get more complicated

3. Approximates the normal distribution well (fatter tails)

 Specifically, we use a Gumbel distribution for error term with 𝜂=0

Logit Models

5/21/2015

Logistic Probability Unit

Logit

𝑓 𝑥 = 𝜇 exp −𝜇 𝑥 − 𝜂 ∙ exp − exp 𝜇 𝑥 − 𝜂
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 Now choice set, 𝐶𝑛, has 𝐽𝑛 multiple alternatives. 

 All error terms, 𝜖𝑗𝑛 are independent and identically distributed (i.i.d.) 

 Closed form solution for probability

Multinomial Logit Model

5/21/2015

Decision 

Config. A Config. B Config. C Config. D Config. E

𝑃 𝑖|𝐶𝑛 =
exp 𝜇𝑉𝑖,𝑛

 𝑗∈𝐶𝑛
exp 𝜇𝑉𝑗,𝑛

𝑓 𝜖 = 𝜇 exp −𝜇𝜖 ∙ exp − exp 𝜇𝜖
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 Independence of Irrelevant Alternatives (IIA)

 i.i.d. error terms 

 IIA assumption can be restrictive

 Assumes that none of the categories can serve as substitutes 

 Can produce inaccurate results

 Fails when alternatives are correlated 

Multinomial Logit Model: IIA
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𝑃 𝑖|𝐶𝑛 =
exp 𝜇𝑉𝑖,𝑛

 𝑗∈𝐶𝑛
exp 𝜇𝑉𝑗,𝑛

𝑃 𝑖|𝐶1

𝑃 𝑗|𝐶1
=

𝑃 𝑖|𝐶2

𝑃 𝑗|𝐶2
∀

𝑖, 𝑗 ∈ 𝐶1

𝑖, 𝑗 ∈ 𝐶1

𝐶1 ⊆ 𝐶𝑛

𝐶2 ⊆ 𝐶𝑛

Main Takeaway: 
The ratio of choice 

probabilities for 
alternative 𝑖 and 𝑗 does 

not depend on the 
characteristics of the 

other alternatives
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Nested Logit Model Structure
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Decision 

Config. A Config. B Config. C Config. D Config. E

Nest 1 Nest 2

Q:   How do we overcome problems when alternative are correlated? 

A:  Split model into a tree structure that allows correlation within “Nests”

• Between nests choices for 𝑖 and 𝑗 are independent 
• Alternatives within nests are now correlated 
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 Error terms, 𝜖𝑗,𝑛 now have the following joint cumulative distribution

 NL probabilities can be expressed as the product of two simple Logits using 
conditional probabilities. 

 NL formulation will have three components 

1. Lower model

2. Upper model 

3. Bridge between levels

Nested Logit Model Mathematics 
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𝑃𝑛 𝑖 = 𝑃𝑛 𝑖|𝐵𝑘 𝑃𝐶 𝐵𝑘

where 𝐵𝑘 is the 𝑘𝑡ℎ nest

𝐹(𝜖1,𝑛 , 𝜖1,𝑛, … , 𝜖𝐽,𝑛) = exp −  𝑠=1
𝑆  𝑗∈𝐵𝑠

exp −
𝜖𝑗,𝑛

𝜇𝑠

𝜇𝑠
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Lower Model
 Gives conditional probability of picking an alternative given a nest.

 Each nest is a simple MNL structure 

Nested Logit Model Mathematics 
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𝑃𝑛 𝑖|𝐵𝑘 =
exp 𝜇𝑘𝑉𝑖,𝑛

 𝑗∈𝐵𝑘
exp 𝜇𝑘𝑉𝑗,𝑛

Decision 

Config. A Config. B Config. C Config. D Config. E

Nest 1 Nest 2
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Bridge

Nested Logit Model Mathematics 
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Q:   The interpretability is great, but how do we link the upper and lower models? 

A:  Inclusive value (or inclusive utility)

𝐼𝑘,𝑛 =
1

𝜇𝑘
ln  

𝑗∈𝐵𝑘

exp 𝜇𝑘𝑉𝑖,𝑛

Decision 

Config. A Config. B Config. C Config. D Config. E

Nest 1 Nest 2

𝐼1 𝐼2

‒ Inclusive value is the expected maximum utility 
from each nest

‒ Carries information from lower model to upper 
model
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Upper Model
 Gives marginal probability of nest choice over all alternatives

 Inclusive value carries information into upper model

 Upper level model is also a simple MNL model

Nested Logit Model Mathematics 
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Decision 

Config. A Config. B Config. C Config. D Config. E

Nest 1 Nest 2

𝑃𝑛 𝐶𝑘 =
exp 𝐼𝑘,𝑛

 𝑙=1
𝑛 exp 𝐼𝑙,𝑛
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 Multinomial Probit

 Cross Nested Logit 

 GEV Models 

 Mixed Logit 

 Mixed Probit

 Choice Set Generation 

Other types of DCMs

5/20/2015
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LaGuardia Airport (LGA) in New York 

Background: 
 Airport congestion leads to significant flight delays. The key driver of airport 

capacity is the runway configuration. Air traffic controllers (ATC) must select 
the runway configuration at a given time based on a set of operational and 
meteorological conditions. 

Goals:
1. To infer the ATC utility functions for the runway configuration decision 

selection 

2. To predict the runway configuration at a given time, given a forecast of 
influencing factors

Case Study: LaGuardia Airport

5/21/2015
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Runway Configuration
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N

R1, R2 | R3, R4
departure runwaysarrival runways

LGA
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Runway Configuration Example
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N

22 | 22

arrival on runway 22

departure on runway 22
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 Datasets were obtained from the FAA Aviation System Performance 
Metrics (ASPM) database.

 ASPM data reports operational and meteorological data (wind speed, 
runway configuration, demand, etc.) in 15-minute intervals. 

 Model was trained on ASPM data for LGA year 2011.

 Model was tested on ASPM data for LGA year 2012. 

Dataset 

5/21/2015
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Candidate Runway Configurations 

5/21/2015

Configuration Frequency

31|4 6,772

22|13 5,679

22|31 4,488

4|13 3,325

31|31 1,483

22,31|31 820

4|4 813

 Runway configurations that were reported more than 1% (excluding late 
evening and early morning hours) in 2011 were considered as candidate 
runway configurations for the model.

 Resulted in 7 candidate configurations
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NL Model Specification
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LGA Runway Decision Selection at Time n

Arrival on 22 4|13 4|4 31|31

22,31|3122|3122|13

31|4𝜇 = 1.1

 Currently, the best model 
follows a nested logit structure 
with alternatives that have arrivals 
on runway 22 grouped into a nest. 
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 Attributes that potentially drive decision 
processes of air traffic controllers

1. Wind speed 

2. Wind direction 

3. Visibility 

4. Airport arrival demand 

5. Coordination with surrounding 
airports 

6. Noise mitigation

7. Difficulty of switching around airport 

8. Inertia – resistance to configuration 
switches because of operational 
difficulties

Runway Configuration Selection Dynamics

5/21/2015

Wind RoseAlso affects availability
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Estimated Utility Function Weights 
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Parameters Value Std. error t-statistic

Inertia parameters

Config. 22|13 4.58 0.187 24.5

Config. 22|31 7.41 0.36 20.57

Config. 22,31|31 7.41 0.36 20.57

Config. 31|31 4.91 0.401 12.24

Config. 31|4 3.16 0.25 12.6

Config. 4|13 3.99 0.196 20.34

Config. 4|4 5.44 0.416 13.1

Wind parameters

High headwind on arrival runway 0.0952 0.0161 5.89

Normal headwind on arrival runway 0.123 0.0197 6.26

Tailwind on arrival runway -0.0946 0.0199 -4.74

Tailwind on departure runway -0.211 0.0173 -12.2

Tailwind on extra arrival runway -0.348 0.07 -4.97

Compression effects
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Estimated Utility Function Weights
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Parameters Value Std. error t-statistic

Demand parameters

Arrival demand: 31|31 -0.101 0.0312 -3.24

Arrival demand: 4|4 -0.0807 0.0327 -2.47

VMC/IMC parameters 

VMC on 31|31 2.09 0.402 5.19

VMC on 31|4 1.36 0.231 5.9

 The low capacity runways have negative 
contributions to the utility based on demand.
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Estimated Utility Function Weights
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Parameters Value Std. error t-statistic

Switch proximity parameters 

31|4 to 31|31 -1.4 0.463 -3.03

4|13 to 31|31 -2.52 0.714 -3.53

4|4 to 31|31 -1.32 0.747 -1.77

22|13 to 31|31 -1.99 0.577 -3.45

4|13 to 31|4 -2.19 0.368 -5.94

4|4 to 31|4 -1.05 0.515 -2.04

22|13 to 31|4 -2.14 0.355 -6.04

4|13 to 4|4 -1.6 0.443 -3.61

22|13 to 4|4 -1.92 0.532 -3.6

31|31 to 22|13 -1.05 0.573 -1.84

 Some runway switches are less preferable than 
others.
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Estimated Utility Function Weights
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Parameters Value Std. error t-statistic

Inter-airport coordination parameters

JFK arr. on 13; LGA arr. 22 / dep. 4 0.85 0.308 2.76

JFK arr. on 13; LGA arr. 31 / dep. 13 1.27 0.464 2.75

JFK dep. on 13; LGA arr. 13 / dep. 31 -1.99 0.224 -8.88

JFK arr. on 13; LGA arr. 4 / dep. 22 -0.448 0.172 -2.6

JFK arr. on 13; LGA arr. 13 / dep. 31 -1.61 0.222 -7.26

JFK arr. on 13; LGA arr. 31 / dep. 13 0.796 0.25 3.19

JFK dep. on 13; LGA arr. 13 / dep. 31 -2.5 0.341 -7.34

JFK arr. on 13; LGA arr. 22 / dep. 4 -0.737 0.293 -2.51

JFK dep. on 13; LGA arr. 4 / dep. 22 -1.15 0.312 -3.68

 Coordination with JFK is an important factor to the decision process

 ATC likes to align arrival and departure flows 
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Runway Configuration Prediction: 15-min Horizon
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 Very high accuracy, especially for configurations that were seen 
frequently throughout the year. 

Runway Configuration Frequency Accuracy

22|13 8,220 98.1%

31|4 6,454 98.4%

4|13 4,851 97.9%

22|31 2,938 97.3%

31|31 2,136 96.8%

22,31|31 1,838 96.7%

4|4 795 96.7%

Total 27,232 95.3%
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Runway Configuration Prediction: 3-hr Horizon
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Runway Configuration Frequency Accuracy

22|13 8,220 89.0%

31|4 6,454 84.8%

4|13 4,851 83.0%

22|31 2,938 71.6%

31|31 2,136 67.0%

22,31|31 1,838 67.2%

4|4 795 68.2%

Total 27,232 82.2%

 Utility functions were used to calculate the probabilities of picking a configuration at each time period.

 Bayes rule was used recursively to forecast on a three-hour time horizon. 

 The configuration with the highest probability was taken as the prediction.

 Accuracy declined by about 13%
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3-hr Prediction Using Forecast Data
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 TAF and schedule demand for LGA July 2014
 Accuracy reduced by about 3%, but was not significantly degraded.

Runway Configuration Frequency Accuracy

22|13 1,096 91.2%

31|4 369 72.1%

4|13 250 73.6%

22|31 186 57.5%

31|31 244 67.6%

22,31|31 69 44.9%

4|4 35 68.6%

Total 2,249 79.0%
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Concluding Remarks
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Discrete Choice Models 
 Have the power to reduce the objective functions of human decision making 

processes

 Useful for identifying the biggest influencing factors in the decision making 
process 

 Inherently data-driven

 Difficulty estimating factors that are not represented in the data (as expected)

Prediction with Discrete Choice Models
 Model reaches accuracies upwards of 95% for a 15 minute horizon

 Model reaches accuracies upwards of 80% for a three hour horizon

 Forecast data does not significantly reduce accuracy of prediction

 Accuracies increase with configurations that were seen frequently


