

Data-Driven Modeling of Human Decision Making Processes

Jacob Avery and Hamsa Balakrishnan MIT Aero/Astro

Introduction

Motivation

- Many systems require significant interactions of automation with human decision makers
- Objective functions can descried these decision processes
	- ‒ Used to optimize system wide performance
	- ‒ Used to develop decision support tools

Presentation Outline

- 1. Discrete choice modeling approach
- 2. Case study for DCM at LaGuardia Airport in New York
	- ‒ Estimation of objective functions
	- Using objective functions for prediction

The Random Utility Model

- DCM uses The Random Utility Model
	- $-$ Utility of choice $c_i \in C_n$ for the n^{th} decision maker:

Observable Component:

 $-$ Linear function of attributes: $V_{i,n} \! = \alpha_i + \sum [\beta_i \cdot X_{i,n}]$

- $\hat{\alpha}, \hat{\beta}$ estimated via MLE
- **Random Error Component**: captures all forms of model error (measurement errors, unobserved attributes, proxy variables, etc.)
	- ‒ Probit model: Gaussian error term
	- ‒ Logit model: Extreme value error term

Logit Models

Logistic Probability Un**it**

Logit

Logit is more computationally tractable than Probit models

- 1. Has a closed form solution
- 2. Especially important as models get more complicated
- 3. Approximates the normal distribution well (fatter tails)
- * Specifically, we use a Gumbel distribution for error term with $\eta = 0$

$$
f(x) = \mu \exp(-\mu(x - \eta)) \cdot \exp(-\exp(\mu(x - \eta)))
$$

 $*$ Now choice set, C_n , has J_n multiple alternatives.

All error terms, ϵ_{jn} are independent and identically distributed (i.i.d.)

$$
f(\epsilon) = \mu \exp(-\mu \epsilon) \cdot \exp(-\exp(\mu \epsilon))
$$

Closed form solution for probability

$$
P(i|C_n) = \frac{\exp(\mu V_{i,n})}{\sum_{j \in C_n} [\exp(\mu V_{j,n})]}
$$

Multinomial Logit Model: IIA

- * Independence of Irrelevant Alternatives (IIA)
- i.i.d. error terms

$$
P(i|C_n) = \frac{\exp(\mu V_{i,n})}{\sum_{j \in C_n} [\exp(\mu V_{j,n})]}
$$

$$
\frac{P(i|C_1)}{P(j|C_1)} = \frac{P(i|C_2)}{P(j|C_2)} \qquad \forall \begin{cases} i,j \in C_1 \\ i,j \in C_1 \\ C_1 \subseteq C_n \\ C_2 \subseteq C_n \end{cases}
$$

Main Takeaway: The ratio of choice probabilities for alternative i and j does not depend on the characteristics of the other alternatives

- * IIA assumption can be restrictive
	- Assumes that none of the categories can serve as substitutes
	- Can produce inaccurate results
	- Fails when alternatives are correlated

Nested Logit Model Structure

Q: How do we overcome problems when alternative are correlated?

A: Split model into a tree structure that allows correlation within "Nests"

- Between nests choices for i and j are independent
- Alternatives within nests are now correlated

Error terms, $\epsilon_{j,n}$ **now have the following joint cumulative distribution**

$$
F(\epsilon_{1,n}, \epsilon_{1,n}, \dots, \epsilon_{J,n}) = \exp\left(-\sum_{s=1}^{S} \left[\left(\sum_{j \in B_s} \left[\exp\left(-\frac{\epsilon_{j,n}}{\mu_s}\right) \right]\right)^{\mu_s} \right] \right)
$$

 NL probabilities can be expressed as the product of two simple Logits using conditional probabilities.

> $P_n(i) = P_n(i|B_k)P_c(B_k)$ where B_k is the $k^{\textit{th}}$ nest

- NL formulation will have three components
	- 1. Lower model
	- 2. Upper model
	- 3. Bridge between levels

Lower Model

- Gives conditional probability of picking an alternative given a nest.
- * Each nest is a simple MNL structure

$$
P_n(i|B_k) = \frac{\exp(\mu_k V_{i,n})}{\sum_{j \in B_k} [\exp(\mu_k V_{j,n})]}
$$

Bridge

Page 11

Q: The interpretability is great, but how do we link the upper and lower models?

A: Inclusive value (or inclusive utility)

‒ Inclusive value is the expected maximum utility from each nest

$$
I_{k,n} = \frac{1}{\mu_k} \ln \left(\sum_{j \in B_k} \left[\exp(\mu_k V_{i,n}) \right] \right)
$$

‒ Carries information from lower model to upper model

Upper Model

- Gives marginal probability of nest choice over all alternatives
- * Inclusive value carries information into upper model
- Upper level model is also a simple MNL model

$$
P_n(C_k) = \frac{\exp(I_{k,n})}{\sum_{l=1}^n [\exp(I_{l,n})]}
$$

Other types of DCMs

- Multinomial Probit
- * Cross Nested Logit
- GEV Models
- Mixed Logit
- Mixed Probit
- Choice Set Generation

Case Study: LaGuardia Airport

LaGuardia Airport (LGA) in New York

Background:

 Airport congestion leads to significant flight delays. The key driver of airport capacity is the runway configuration. Air traffic controllers (ATC) must select the runway configuration at a given time based on a set of operational and meteorological conditions.

Goals:

- 1. To infer the ATC utility functions for the runway configuration decision selection
- 2. To predict the runway configuration at a given time, given a forecast of influencing factors

Runway Configuration

OUNDATIONS OF RESILIENT CYBER-PHYSICAL SYSTEMS

Runway Configuration Example

- Datasets were obtained from the FAA Aviation System Performance Metrics (ASPM) database.
- ASPM data reports operational and meteorological data (wind speed, runway configuration, demand, etc.) in 15-minute intervals.
- Model was trained on ASPM data for LGA year 2011.
- Model was tested on ASPM data for LGA year 2012.

Candidate Runway Configurations

- Runway configurations that were reported more than 1% (excluding late evening and early morning hours) in 2011 were considered as candidate runway configurations for the model.
- **Resulted in 7 candidate configurations**

NL Model Specification

follows a nested logit structure with alternatives that have arrivals on runway 22 grouped into a nest.

Runway Configuration Selection Dynamics

- Attributes that potentially drive decision processes of air traffic controllers
	- 1. Wind speed
- Also affects availability **Wind Rose**
- 2. Wind direction
- 3. Visibility
- 4. Airport arrival demand
- 5. Coordination with surrounding airports
- 6. Noise mitigation
- 7. Difficulty of switching around airport
- 8. Inertia resistance to configuration switches because of operational difficulties

Page 21 Compression effects

The low capacity runways have negative contributions to the utility based on demand.

Some runway switches are less preferable than others.

- Coordination with JFK is an important factor to the decision process
- ATC likes to align arrival and departure flows

Runway Configuration Prediction: 15-min Horizon

 Very high accuracy, especially for configurations that were seen frequently throughout the year.

Runway Configuration Prediction: 3-hr Horizon

- Utility functions were used to calculate the probabilities of picking a configuration at each time period.
- Bayes rule was used recursively to forecast on a three-hour time horizon.
- The configuration with the highest probability was taken as the prediction.
- Accuracy declined by about 13%

3-hr Prediction Using Forecast Data

- TAF and schedule demand for LGA July 2014
- Accuracy reduced by about 3%, but was not significantly degraded.

Concluding Remarks

Discrete Choice Models

- * Have the power to reduce the objective functions of human decision making processes
- Useful for identifying the biggest influencing factors in the decision making process
- * Inherently data-driven
- Difficulty estimating factors that are not represented in the data (as expected)

Prediction with Discrete Choice Models

- Model reaches accuracies upwards of 95% for a 15 minute horizon
- Model reaches accuracies upwards of 80% for a three hour horizon
- Forecast data does not significantly reduce accuracy of prediction
- Accuracies increase with configurations that were seen frequently

