

Data-Driven Modeling of Human Decision Making Processes

Jacob Avery and Hamsa Balakrishnan MIT Aero/Astro

Introduction

Motivation

- Many systems require significant interactions of automation with human decision makers
- * Objective functions can descried these decision processes
 - Used to optimize system wide performance
 - Used to develop decision support tools

Presentation Outline

- 1. Discrete choice modeling approach
- 2. Case study for DCM at LaGuardia Airport in New York
 - Estimation of objective functions
 - Using objective functions for prediction

The Random Utility Model

- * DCM uses The Random Utility Model
 - Utility of choice $c_i \in C_n$ for the n^{th} decision maker:

* Observable Component:

- Linear function of attributes: $V_{i,n} = \alpha_i + \sum [\beta_i \cdot X_{i,n}]$
- $\hat{\alpha}, \hat{\beta}$ estimated via MLE
- Random Error Component: captures all forms of model error (measurement errors, unobserved attributes, proxy variables, etc.)
 - Probit model: Gaussian error term
 - Logit model: Extreme value error term

Logit Models

Logistic Probability Unit

Logit

* Logit is more computationally tractable than Probit models

- 1. Has a closed form solution
- 2. Especially important as models get more complicated
- 3. Approximates the normal distribution well (fatter tails)
- * Specifically, we use a Gumbel distribution for error term with $\eta = 0$

$$f(x) = \mu \exp(-\mu(x - \eta)) \cdot \exp(-\exp(\mu(x - \eta)))$$

* Now choice set, C_n , has J_n multiple alternatives.

* All error terms, ϵ_{in} are independent and identically distributed (i.i.d.)

$$f(\epsilon) = \mu \exp(-\mu\epsilon) \cdot \exp(-\exp(\mu\epsilon))$$

$$P(i|C_n) = \frac{\exp(\mu V_{i,n})}{\sum_{j \in C_n} [\exp(\mu V_{j,n})]}$$

Multinomial Logit Model: IIA

- Independence of Irrelevant Alternatives (IIA)
- * i.i.d. error terms

$$P(i|C_n) = \frac{\exp(\mu V_{i,n})}{\sum_{j \in C_n} [\exp(\mu V_{j,n})]}$$

$$\frac{P(i|C_1)}{P(j|C_1)} = \frac{P(i|C_2)}{P(j|C_2)} \qquad \forall \begin{cases} i, j \in C_1\\ i, j \in C_1\\ C_1 \subseteq C_n\\ C_2 \subseteq C_n \end{cases}$$

Main Takeaway: The ratio of choice probabilities for alternative *i* and *j* does not depend on the characteristics of the other alternatives

- * IIA assumption can be restrictive
 - * Assumes that none of the categories can serve as substitutes
 - * Can produce inaccurate results
 - * Fails when alternatives are correlated

Nested Logit Model Structure

Q: How do we overcome problems when alternative are correlated?

A: Split model into a tree structure that allows correlation within "Nests"

- Between nests choices for *i* and *j* are independent
- Alternatives within nests are now correlated

* Error terms, $\epsilon_{j,n}$ now have the following joint cumulative distribution

$$F(\epsilon_{1,n}, \epsilon_{1,n}, \dots, \epsilon_{J,n}) = \exp\left(-\sum_{s=1}^{S} \left[\left(\sum_{j \in B_s} \left[\exp\left(-\frac{\epsilon_{j,n}}{\mu_s}\right)\right]\right)^{\mu_s}\right]\right)$$

* NL probabilities can be expressed as the product of two simple Logits using conditional probabilities.

 $P_n(i) = P_n(i|B_k)P_C(B_k)$ where B_k is the k^{th} nest

- * NL formulation will have three components
 - 1. Lower model
 - 2. Upper model
 - 3. Bridge between levels

Lower Model

- * Gives conditional probability of picking an alternative given a nest.
- * Each nest is a simple MNL structure

$$P_n(i|B_k) = \frac{\exp(\mu_k V_{i,n})}{\sum_{j \in B_k} [\exp(\mu_k V_{j,n})]}$$

Bridge

Page 11

Q: The interpretability is great, but how do we link the upper and lower models?

A: Inclusive value (or inclusive utility)

 Inclusive value is the expected maximum utility from each nest

$$I_{k,n} = \frac{1}{\mu_k} \ln \left(\sum_{j \in B_k} [\exp(\mu_k V_{i,n})] \right)$$

 Carries information from lower model to upper model

Upper Model

- * Gives marginal probability of nest choice over all alternatives
- * Inclusive value carries information into upper model
- * Upper level model is also a simple MNL model

$$P_n(C_k) = \frac{\exp(I_{k,n})}{\sum_{l=1}^n [\exp(I_{l,n})]}$$

Other types of DCMs

- * Multinomial Probit
- * Cross Nested Logit
- * GEV Models
- * Mixed Logit
- * Mixed Probit
- * Choice Set Generation

Case Study: LaGuardia Airport

LaGuardia Airport (LGA) in New York

Background:

 Airport congestion leads to significant flight delays. The key driver of airport capacity is the runway configuration. Air traffic controllers (ATC) must select the runway configuration at a given time based on a set of operational and meteorological conditions.

Goals:

- 1. To infer the ATC utility functions for the runway configuration decision selection
- 2. To predict the runway configuration at a given time, given a forecast of influencing factors

Runway Configuration

OUNDATIONS OF RESILIENT

CYBER-PHYSICAL SYSTEMS

Runway Configuration Example

- * Datasets were obtained from the FAA Aviation System Performance Metrics (ASPM) database.
- * ASPM data reports operational and meteorological data (wind speed, runway configuration, demand, etc.) in 15-minute intervals.
- * Model was trained on ASPM data for LGA year 2011.
- * Model was tested on ASPM data for LGA year 2012.

Candidate Runway Configurations

- Runway configurations that were reported more than 1% (excluding late evening and early morning hours) in 2011 were considered as candidate runway configurations for the model.
- Resulted in 7 candidate configurations

Configuration	Frequency
31 4	6,772
22 13	5,679
22 31	4,488
4 13	3,325
31 31	1,483
22,31 31	820
4 4	813

NL Model Specification

 Currently, the best model follows a nested logit structure with alternatives that have arrivals on runway 22 grouped into a nest.

Runway Configuration Selection Dynamics

- Attributes that potentially drive decision processes of air traffic controllers
 - 1. Wind speed

Wind direction

Also affects availability

3. Visibility

2.

- 4. Airport arrival demand
- 5. Coordination with surrounding airports
- 6. Noise mitigation
- 7. Difficulty of switching around airport
- Inertia resistance to configuration switches because of operational difficulties

Parameters	Value	Std. error	t-statistic
Inertia parameters			
Config. 22 13	4.58	0.187	24.5
Config. 22 31	7.41	0.36	20.57
Config. 22,31 31	7.41	0.36	20.57
Config. 31 31	4.91	0.401	12.24
Config. 31 4	3.16	0.25	12.6
Config. 4 13	3.99	0.196	20.34
Config. 4 4	5.44	0.416	13.1
Wind parameters			
High headwind on arrival runway	0.0952	0.0161	5.89
Normal headwind on arrival runway	0.123	0.0197	6.26
Tailwind on arrival runway	-0.0946	0.0199	-4.74
Tailwind on departure runway	-0.211	0.0173	-12.2
Tailwind on extra arrival runway	-0.348	0.07	-4.97

Page 21 Compression effects

Value	Std. error	t-statistic
-0.101	0.0312	-3.24
-0.0807	0.0327	-2.47
	Value -0.101 -0.0807	Value Std. error -0.101 0.0312 -0.0807 0.0327

VMC/IMC parameters			
VMC on 31 31	2.09	0.402	5.19
VMC on 31 4	1.36	0.231	5.9

 The low capacity runways have negative contributions to the utility based on demand.

Parameters	Value	Std. error	t-statistic
Switch proximity parameters			
31 4 to 31 31	-1.4	0.463	-3.03
4 13 to 31 31	-2.52	0.714	-3.53
4 4 to 31 31	-1.32	0.747	-1.77
22 13 to 31 31	-1.99	0.577	-3.45
4 13 to 31 4	-2.19	0.368	-5.94
4 4 to 31 4	-1.05	0.515	-2.04
22 13 to 31 4	-2.14	0.355	-6.04
4 13 to 4 4	-1.6	0.443	-3.61
22 13 to 4 4	-1.92	0.532	-3.6
31 31 to 22 13	-1.05	0.573	-1.84

Some runway switches are less preferable than others.

Parameters	Value	Std. error	t-statistic
Inter-airport coordination parameters			
JFK arr. on 13; LGA arr. 22 / dep. 4	0.85	0.308	2.76
JFK arr. on 13; LGA arr. 31 / dep. 13	1.27	0.464	2.75
JFK dep. on 13; LGA arr. 13 / dep. 31	-1.99	0.224	-8.88
JFK arr. on 13; LGA arr. 4 / dep. 22	-0.448	0.172	-2.6
JFK arr. on 13; LGA arr. 13 / dep. 31	-1.61	0.222	-7.26
JFK arr. on 13; LGA arr. 31 / dep. 13	0.796	0.25	3.19
JFK dep. on 13; LGA arr. 13 / dep. 31	-2.5	0.341	-7.34
JFK arr. on 13; LGA arr. 22 / dep. 4	-0.737	0.293	-2.51
JFK dep. on 13; LGA arr. 4 / dep. 22	-1.15	0.312	-3.68

- Coordination with JFK is an important factor to the decision process
- ATC likes to align arrival and departure flows

Runway Configuration Prediction: 15-min Horizon

Runway Configuration	Frequency	Accuracy
22 13	8,220	98.1%
31 4	6,454	98.4%
4 13	4,851	97.9%
22 31	2,938	97.3%
31 31	2,136	96.8%
22,31 31	1,838	96.7%
4 4	795	96.7%
Total	27,232	95.3%

* Very high accuracy, especially for configurations that were seen frequently throughout the year.

Runway Configuration Prediction: 3-hr Horizon

Runway Configuration	Frequency	Accuracy
22 13	8,220	89.0%
31 4	6,454	84.8%
4 13	4,851	83.0%
22 31	2,938	71.6%
31 31	2,136	67.0%
22,31 31	1,838	67.2%
4 4	795	68.2%
Total	27,232	82.2%

- Utility functions were used to calculate the probabilities of picking a configuration at each time period.
- Bayes rule was used recursively to forecast on a three-hour time horizon.
- The configuration with the highest probability was taken as the prediction.
- Accuracy declined by about 13%

3-hr Prediction Using Forecast Data

Runway Configuration	Frequency	Accuracy
22 13	1,096	91.2%
31 4	369	72.1%
4 13	250	73.6%
22 31	186	57.5%
31 31	244	67.6%
22,31 31	69	44.9%
4 4	35	68.6%
Total	2,249	79.0%

- * TAF and schedule demand for LGA July 2014
- * Accuracy reduced by about 3%, but was not significantly degraded.

Concluding Remarks

Discrete Choice Models

- Have the power to reduce the objective functions of human decision making processes
- Useful for identifying the biggest influencing factors in the decision making process
- * Inherently data-driven
- * Difficulty estimating factors that are not represented in the data (as expected)

Prediction with Discrete Choice Models

- * Model reaches accuracies upwards of 95% for a 15 minute horizon
- * Model reaches accuracies upwards of 80% for a three hour horizon
- * Forecast data does not significantly reduce accuracy of prediction
- * Accuracies increase with configurations that were seen frequently

