Robust Control for Safety and Security Hamsa Balakrishnan Joint work with H. Khadilkar, P. Park, V. Ramanujam and C. Tomlin #### New Technologies Enable New Operational Concepts - * Today's operations - Surveillance using ground-based radar systems - Primarily "procedural" approach to air traffic control - * Manual handoffs between controllers with little prior coordination - * Radio communications between pilots and controllers - NextGen operational concepts - * Satellite-based surveillance technologies: ADS-B - Increased potential for control and optimization algorithms - * Increased availability of state information (onboard and ground) - Datalink capabilities ## Opportunities and Challenges - * Increased potential for control and optimization algorithms - * Enhancing system capacity - * Improving operational efficiency - * Maintaining/improving system safety - * New challenges - * Interactions between new and legacy infrastructure - Information security - * GPS jamming/spoofing - * Detecting adversaries in the presence of uncertainties - * Incentives for participation - * Cost vs. potential benefit of collaboration - * Risks associated with information-sharing # Hybrid Communication/Control Algorithms - * Objectives: Safety and efficiency - * Conflict detection and resolution - Optimize State Update Interval - * Minimize flight times - Decentralized at longer range - * Low traffic density - ADS-B surveillance - * Max transmit power - * Handover zone - * Decentralized control - * Adaptively adjust transmit power - * Centralized close to the airport - * High traffic density - * Min transmit power - * Ground radar surveillance - * Augmented by ADS-B ### High Confidence Networked Control * Secure, fault-tolerant control in the presence of adversaries Distributed control using onboard threat detection * GPS and inertial sensor data fusion * Verification using Doppler effect and RSS of ADS-B messages from neighboring aircraft * Control objectives Conflict avoidance, maintaining separation in the presence of uncertainty Minimizing flight times Fault detection ## Safe, Efficient and Robust Scheduling - Sequenced to land (takeoff) on a runway, and determine their landing (takeoff) times - Separation requirements (safety) - * Limited flexibility afforded to air traffic controllers - Operational constraints (including arrival/ departure time windows) - * Precedence constraints - **Objectives:** Throughput, robustness, *equity* - Results Page 6 - Solution space can be represented as a network whose size is linear in the number of aircraft - Various interesting extensions can be solved in (pseudo-)polynomial time as shortest-path problems on variations of this network - * Can evaluate tradeoffs between multiple objectives Chandran & Balakrishnan, ACC 2008 Balakrishnan & Chandran, Oper. Res., 2010 Lee & Balakrishnan, Proc. of IEEE, 2008 #### Resource Reallocation in the Presence of Uncertainty - Initial allocation of resources typically adopt an optimistic view of capacity - * Algorithms for reallocating resources given stochastic capacity forecasts - * Exchange mechanisms - * Pareto-efficiency (no other allocation preferable to all airlines) - * Voluntary participation (incentive to participate) - Incentive compatibility (incentive to report true preferences) - * Core allocation (no incentive for airlines to deviate by forming coalitions) - * Stochastic optimization algorithms given scenario-tree forecasts - * Evaluation of incentives to participate, using realistic aircraft delay costs - * Evaluation of tradeoffs between adaptability (extent of dynamic replanning) and flexibility available to airlines - Mechanisms that combine optimization with (monetary) transfers #### Summary - New technologies present opportunities for robust control algorithms - * New challenges pertaining to - * Safety - * Security - * Information-sharing - * Interactions between new and legacy infrastructure systems - * Integration and co-design of Economic Incentives (EI) and Robust Control (RC) algorithms for better system performance