

Robust Control for Safety and Security

Hamsa Balakrishnan

Joint work with H. Khadilkar, P. Park, V. Ramanujam and C. Tomlin

New Technologies Enable New Operational Concepts

- * Today's operations
 - Surveillance using ground-based radar systems
 - Primarily "procedural" approach to air traffic control
 - * Manual handoffs between controllers with little prior coordination
 - * Radio communications between pilots and controllers
- NextGen operational concepts
 - * Satellite-based surveillance technologies: ADS-B
 - Increased potential for control and optimization algorithms
 - * Increased availability of state information (onboard and ground)
 - Datalink capabilities

Opportunities and Challenges

- * Increased potential for control and optimization algorithms
 - * Enhancing system capacity
 - * Improving operational efficiency
 - * Maintaining/improving system safety
- * New challenges
 - * Interactions between new and legacy infrastructure
 - Information security
 - * GPS jamming/spoofing
 - * Detecting adversaries in the presence of uncertainties
 - * Incentives for participation
 - * Cost vs. potential benefit of collaboration
 - * Risks associated with information-sharing

Hybrid Communication/Control Algorithms

- * Objectives: Safety and efficiency
 - * Conflict detection and resolution
 - Optimize State Update Interval
 - * Minimize flight times
- Decentralized at longer range
 - * Low traffic density
 - ADS-B surveillance
 - * Max transmit power
- * Handover zone
 - * Decentralized control
 - * Adaptively adjust transmit power
- * Centralized close to the airport
 - * High traffic density
 - * Min transmit power
 - * Ground radar surveillance
 - * Augmented by ADS-B

High Confidence Networked Control

* Secure, fault-tolerant control in the presence of adversaries

 Distributed control using onboard threat detection

* GPS and inertial sensor data fusion

* Verification using Doppler effect and RSS of ADS-B messages from neighboring aircraft

* Control objectives

 Conflict avoidance, maintaining separation in the presence of uncertainty

Minimizing flight times

Fault detection

Safe, Efficient and Robust Scheduling

- Sequenced to land (takeoff) on a runway, and determine their landing (takeoff) times
 - Separation requirements (safety)
 - * Limited flexibility afforded to air traffic controllers
 - Operational constraints (including arrival/ departure time windows)
 - * Precedence constraints
- **Objectives:** Throughput, robustness, *equity*
- Results

Page 6

- Solution space can be represented as a network whose size is linear in the number of aircraft
- Various interesting extensions can be solved in (pseudo-)polynomial time as shortest-path problems on variations of this network
- * Can evaluate tradeoffs between multiple objectives

Chandran & Balakrishnan, ACC 2008 Balakrishnan & Chandran, Oper. Res., 2010 Lee & Balakrishnan, Proc. of IEEE, 2008

Resource Reallocation in the Presence of Uncertainty

- Initial allocation of resources typically adopt an optimistic view of capacity
- * Algorithms for reallocating resources given stochastic capacity forecasts
 - * Exchange mechanisms
 - * Pareto-efficiency (no other allocation preferable to all airlines)
 - * Voluntary participation (incentive to participate)
 - Incentive compatibility (incentive to report true preferences)
 - * Core allocation (no incentive for airlines to deviate by forming coalitions)
 - * Stochastic optimization algorithms given scenario-tree forecasts
 - * Evaluation of incentives to participate, using realistic aircraft delay costs
 - * Evaluation of tradeoffs between adaptability (extent of dynamic replanning) and flexibility available to airlines
 - Mechanisms that combine optimization with (monetary) transfers

Summary

- New technologies present opportunities for robust control algorithms
- * New challenges pertaining to
 - * Safety
 - * Security
 - * Information-sharing
 - * Interactions between new and legacy infrastructure systems
 - * Integration and co-design of Economic Incentives (EI) and Robust Control (RC) algorithms for better system performance

