

Aggregating buildings to provide Ancillary Services

Optimal contract design for provision of frequency regulation capacity

Maximilian Balandat*

The Electricity Spot Market in California

Day-ahead market (DAM)

- runs every day at noon (bids due before 10am)
- market clearing is the solution of a large optimization problem)
- awards hourly schedules (for both energy and Ancillary Services (AS))

Real-time market (RTM)

- Hour-ahead scheduling process (HASP)
- Fifteen-minute market (FMM)
- bids due >75 min before settling period begins
- ISO procures additional resources based on new forecast

Real-time dispatch (RTD)

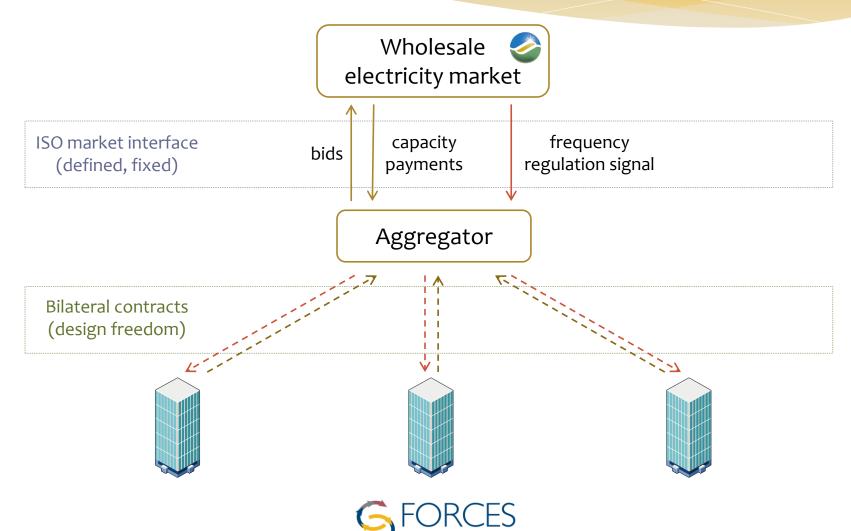
- ISO sends dispatch signals to resources
- 5-minute dispatch intervals for energy providing resources
- 4-second intervals for regulation up/down

- Ancillary services (traditionally provided by generators):
 - Non-spinning reserves, Spinning reserves
 - * Regulation Up, Regulation Down

CAISO Fifth Replacement FERC Electric Tariff (May 2014)

Using Buildings to Provide Frequency Regulation Capacity

* Why buildings?


- * HVAC systems significant share of overall energy consumption (~30%)
- * thermal mass provides temporal flexibility in terms of cooling/heating
- relatively fast actuation speeds (high ramp rates)
- very low opportunity cost compared to conventional generators

* However:

- * Buildings too small to participate in the market by themselves
- * Aggregator can provide the interface if the incentives are right

- TIAX Report for NTIS: (2002). Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III: Energy Savings Potential (2002).
- Vrettos et al.: Robust Provision of Frequency Reserves by Office Building Aggregations (2014).
- Maasoumy et al.: Model Predictive Control Approach to Online Computation of Demand-Side Flexibility of Commercial Buildings HVAC Systems for Supply Following (2014).

Aggregating Buildings for Frequency Regulation

Robust Scheduling of Building HVAC for Providing Frequency Regulation Capacity

Basic optimization problem for building b for **fixed regulation** capacities $\mathbf{r}^{\mathrm{b}\uparrow} = (r_0^{\mathrm{b}\uparrow}, \dots, r_N^{\mathrm{b}\uparrow})$ and $\mathbf{r}^{\mathrm{b}\downarrow} = (r_0^{\mathrm{b}\downarrow}, \dots, r_N^{\mathrm{b}\downarrow})$

$$\bar{\mathbf{u}}^{\mathrm{b}*}(\mathbf{r}^{\mathrm{b}\uparrow}, \mathbf{r}^{\mathrm{b}\downarrow}) = \arg\min \sum_{t} c_{t}^{\mathrm{b}} u_{t}^{\mathrm{b}}$$

s.t.
$$u_t^b + w_t^b \in \mathbb{U}_t^b$$

Input constraints

$$y_t^{\mathrm{b}} \in \mathbb{Y}_t^b$$

Comfort constraints

$$x_{t+1}^{b} = A^{b}x_{t}^{b} + B^{b}u_{t}^{b} + E^{b}v_{t}^{b} + R^{b}w_{t}^{b}$$
$$y_{t}^{b} = C^{b}x_{t}^{b} + D^{b}u_{t}^{b} + F^{b}v_{t}^{b}$$

System dynamics and output

$$-r_t^{\mathrm{b}\uparrow} \le w_t^{\mathrm{b}} \le r_t^{\mathrm{b}\downarrow}$$

Bounds on regulation signal

 $v: \mathsf{combined} \ \mathsf{heating} \ \mathsf{load}$ c: energy price

y: zone temperatures

w: regulation signal

u: HVAC inputs (normalized)

Robust Linear Program

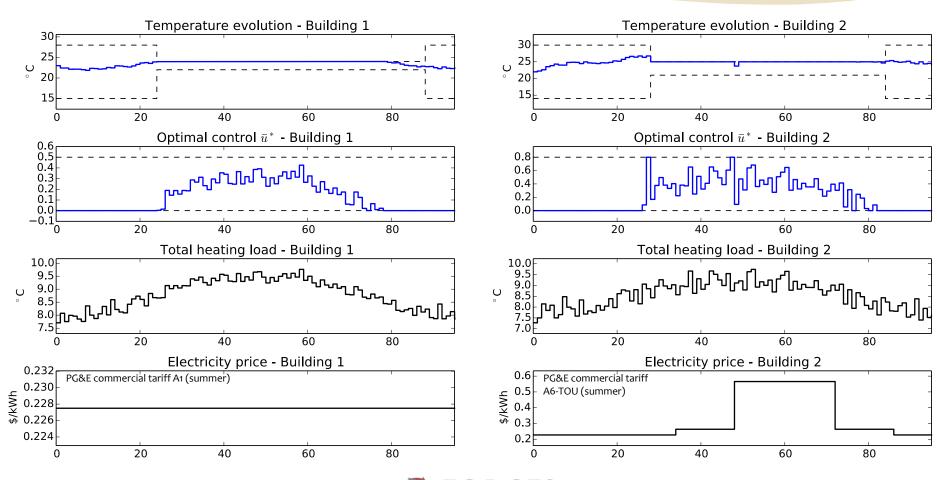
Determining Optimal Sign-Up Rewards – Formulation as a Bilevel Optimization Problem

st Aggregator chooses contracted capacities, pays rewards $R^{
m b}$

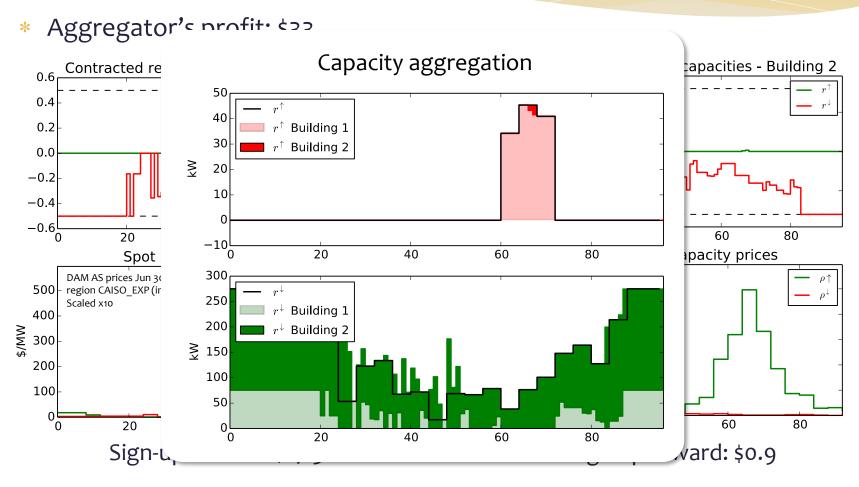
$$\left(\bar{\mathbf{u}}^*, \mathbf{r}^{\uparrow *}, \mathbf{r}^{\downarrow *}, R^*\right) = \underset{\mathbf{u}, \mathbf{r}^{\uparrow}, \mathbf{r}^{\flat \uparrow}, \mathbf{r}^{\downarrow}, \mathbf{r}^{\flat \downarrow} R^{b}}{\arg\max} \underbrace{\sum_{t} \rho_{t}^{\uparrow} r_{t}^{\uparrow} + \rho_{t}^{\downarrow} r_{t}^{\downarrow}}_{\text{Revenue (market)}} - \underbrace{\sum_{b} R^{b}}_{\text{Total rewards}}$$

$$r_t^{\uparrow},\,r_t^{\downarrow},\,r_t^{\mathrm{b}\uparrow},\,r_t^{\mathrm{b}\downarrow}\geq 0$$
 Non-negativity

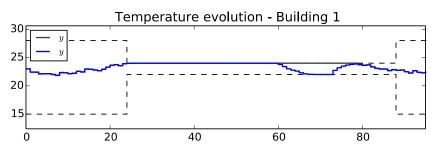
$$ar{\mathbf{u}}^{\mathrm{b}} = ar{\mathbf{u}}^{\mathrm{b}*}(\mathbf{r}^{\mathrm{b}\uparrow},\mathbf{r}^{\mathrm{b}\downarrow})$$
 Optimality

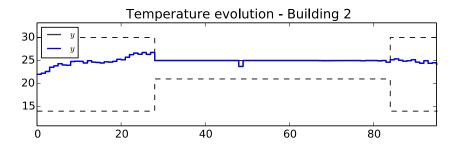

$$\sum_t c_t^{\mathrm{b}} u_t^{\mathrm{b}} - R^{\mathrm{b}} \leq \sum_t c_t^{\mathrm{b}} u_t^{\mathrm{b}*}(0,0)$$
 Individual Rationality

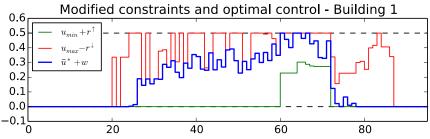
 $ho^{\uparrow}:$ regulation up capacity price $ho^{\downarrow}:$ regulation down capacity price $R^{\mathrm{b}}:$ sign-up reward for building b

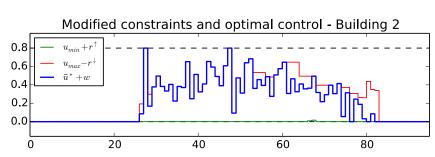

Linear Bilevel Program – cast as Mixed Integer Linear Program

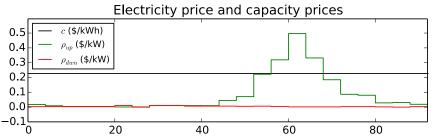
Simulation Results: Outside Option (no contract)

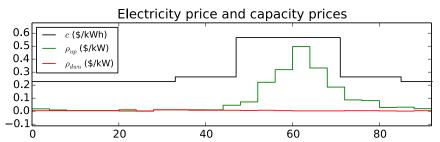

Simulation Results: Optimal Contracts

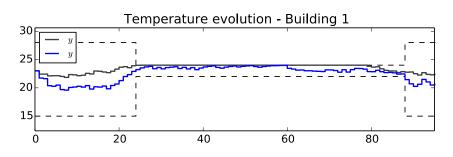


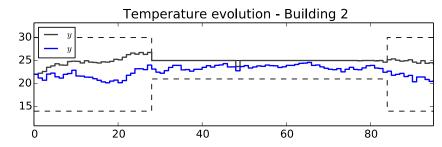


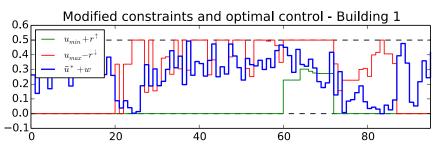

Simulation Results: Optimal Control

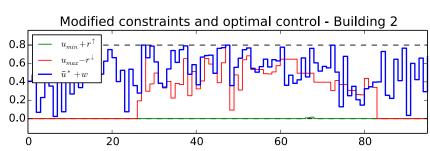

* Nominal case (w=0)

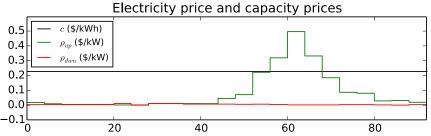


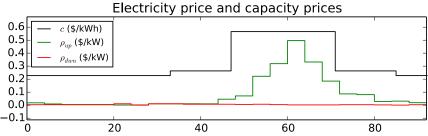







Simulation Results: Optimal Control


* w random (uniform)



Conclusion and Future Work

Conclusion

- Formulated aggregator's optimal contract design problem
- Developed MILP-based solution framework
 - can easily incorporate additional constraints and objectives (e.g. energy limits, savings requirements)

Future work

- Extension to bilinear building models
- Account for uncertainty in predictions
- Feasibility study based on comprehensive CAISO price data
- * Interface considerations: does a simple generic model suffice?
- * Include performance payments ("mileage")

