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Demand Response (DR)

Projected net load in CAISO system:

Net load - March 31
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» Growing need for operational flexibility due to more renewables

» DR as “behavior-modifying mechanisms to change the net load shape”

Objective: Causal inference on participant behavior in Residential DR

Households receive messages (via text/app, email, etc.) incentivizing
them to reduce electricity consumption.
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Econometrics and Machine Learning
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Little (but very interesting) work bringing the two fields together, e.g.:



Estimating the Counterfactual

Economics gold standard: Randomized Experiment
» Randomly split population in treatment and control groups

» Compare average outcome in the two groups
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Estimating the Counterfactual

Economics gold standard: Randomized Experiment
» Randomly split population in treatment and control groups

» Compare average outcome in the two groups

Our goal: Use within-subject variation in repeated treatment assignment

actual
consumption

estimated demand
reduction

consumption

/

estimated
counterfactual

typical
consumption

DR event

t t
12:00 18:00

Assumption: Potential outcomes® and assignment of DR events are
conditionally independent given covariates of the model.

*Consumption during potential event hour in case of event / no event.
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Goals and Challenges

Individual Treatment Effect (ITE): Response of a single household to
receiving a DR event*

Average Treatment Effect (ATE): Average response of population*

*possibly conditional on reward level, time of day, etc.
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Goals and Challenges

Individual Treatment Effect (ITE): Response of a single household to
receiving a DR event*

Average Treatment Effect (ATE): Average response of population*

*possibly conditional on reward level, time of day, etc.

Goals
» Estimate ITE based solely on within-user variation
» Obtain estimate of ATE by marginalizing ITE estimates
» benchmark against the experimental estimates

» Use ITE estimates for targeting to improve allocative efficiency

Challenges
» Very high residual variance in household-level consumption
» Limited number of DR events per household

» Validity relies on unconfoundedness assumption
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A Large-Scale Field Experiment

Randomized Controlled Trial among customers of (7) ohm

» Estimate demand curve, effect of adopting home automation
technology and targeting algorithm

> =~ 12,500 participants over 15 month duration
» Funding from California Energy Commission’s EPIC grant
» Rollout: July 2016
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Synthetic Experiments: ITE Estimation Errors
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Synthetic Experiments: ATE estimates
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Synthetic Experiments: Targeting

Goal: Find participants with largest (most negative) ITEs

classification accuracy

relative increase in conditional mean

1.0 . - 1.0
. * ADA
//ﬁ/ " * KNN
5 08f ,ﬁ 1 508 * RFR 1
g N ¥ - g % Ridge
E *x % ,’ﬁ 2 0.6l * asm_CLS |
So06f * ® % g g ' % asm_Mean
© ¥ e &
£ * b = * % * * %
3 * goar x ; * x ox K* g
5 0.4} * * ADA 4 2 * * *
< 7 *  KNN 5 L B
L A c
I} . * RFR S 0.2F J
© 4 . t
& 021 { & * Ridge g o
e * asm_CLS =
SR * asm_Mean 001 =3 — #- -3 - - F - g - - %
, _
0.0 . . . . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

upper quantile

Machine Learning Methods for Causal Inference on High-frequency Observational Data

upper quantile

8/9



Summary

Methodology
Cross-pollination between Econometrics and Machine Learning
» Proposed novel algorithms for causal inference

> theoretical properties (under some assumptions)
» performance demonstrated in synthetic experiments using real data

» Developed targeting algorithms for Demand Response
» improve allocative efficiency by exploiting heterogeneity across customers

Empirical Evaluation
Upcoming large-scale Randomized Controlled Trial in California
» Potential implications for technology and policy
» Benchmark our estimators against the experimental gold standard

» Evaluate effectiveness of our targeting algorithms
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