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Demand Response (DR)
Projected net load in CAISO system:

Net load - March 31
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I Growing need for operational flexibility due to more renewables

I DR as “behavior-modifying mechanisms to change the net load shape”

Objective: Causal inference on participant behavior in Residential DR

Households receive messages (via text/app, email, etc.) incentivizing
them to reduce electricity consumption.
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Econometrics and Machine Learning
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Little (but very interesting) work bringing the two fields together, e.g.:
I S. Athey and G. W. Imbens. Recursive Partitioning for Heterogeneous Causal Effects. ArXiV, Dec 2015.

I L. Tian et al. A simple method for estimating interactions between a treatment and a large number of
covariates. Journal of the American Statistical Association, 2014.
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Estimating the Counterfactual

Economics gold standard: Randomized Experiment

I Randomly split population in treatment and control groups

I Compare average outcome in the two groups

Our goal: Use within-subject variation in repeated treatment assignment

Assumption: Potential outcomes∗ and assignment of DR events are
conditionally independent given covariates of the model.

∗Consumption during potential event hour in case of event / no event.
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Goals and Challenges

Individual Treatment Effect (ITE): Response of a single household to
receiving a DR event∗

Average Treatment Effect (ATE): Average response of population∗

∗possibly conditional on reward level, time of day, etc.

Goals
I Estimate ITE based solely on within-user variation

I Obtain estimate of ATE by marginalizing ITE estimates
I benchmark against the experimental estimates

I Use ITE estimates for targeting to improve allocative efficiency

Challenges

I Very high residual variance in household-level consumption

I Limited number of DR events per household

I Validity relies on unconfoundedness assumption
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A Large-Scale Field Experiment

Randomized Controlled Trial among customers of

I Estimate demand curve, effect of adopting home automation
technology and targeting algorithm

I ≈ 12,500 participants over 15 month duration

I Funding from California Energy Commission’s EPIC grant

I Rollout: July 2016
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Synthetic Experiments: ITE Estimation Errors
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Synthetic Experiments: ATE estimates

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

ADA

0.5 $/kWh

1.0 $/kWh

1.5 $/kWh

mean

true ATE

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

KNN

0.5 $/kWh

1.0 $/kWh

1.5 $/kWh

mean

true ATE

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

RFR

0.5 $/kWh

1.0 $/kWh

1.5 $/kWh

mean

true ATE

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

Ridge

0.5 $/kWh

1.0 $/kWh

1.5 $/kWh

mean

true ATE

0.15 0.10 0.05 0.00 0.05
0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

Fixed Effects Model

0.5 $/kWh

1.0 $/kWh

1.5 $/kWh

mean

true ATE

Machine Learning Methods for Causal Inference on High-frequency Observational Data 7 / 9



Synthetic Experiments: Targeting

Goal: Find participants with largest (most negative) ITEs
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Summary

Methodology
Cross-pollination between Econometrics and Machine Learning

I Proposed novel algorithms for causal inference
I theoretical properties (under some assumptions)
I performance demonstrated in synthetic experiments using real data

I Developed targeting algorithms for Demand Response
I improve allocative efficiency by exploiting heterogeneity across customers

Empirical Evaluation
Upcoming large-scale Randomized Controlled Trial in California

I Potential implications for technology and policy

I Benchmark our estimators against the experimental gold standard

I Evaluate effectiveness of our targeting algorithms
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