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Network Sensing: Security Failures (Attacks)

How to operationalize network sensing strategies?

I For a given network that faces adversarial
disruptions, design and operationalize (randomized)
sensing strategies subject to limitations on sensing
range and resource constraints.

Approach

I Formulate a robust optimization problem over the
network.

I Defender: chooses a dispatch of sUAS.
I Attacker: targets multiple network components.

I Main contributions
I General sensing model: heterogeneous range.
I Solution approach using combinatorial problems.

Malicious attacks

Randomized defense

M. Dahan, L. Sela, S. Amin. “Randomized Network Sensing under Strategic Disruptions”,
Working paper
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Related Work

I Dispatch of sUAS
I Distance-Constrained Vehicle Routing Problem [Kara ’11, Laporte ’92]

I Network sensing under reliability failures
I Mixed-integer optimization [Berry ’06, Chakrabarti ’09]
I Submodular optimization [Krause ’08]

I Network security games [Goyal ’14]
I Search games [Gal ’14]
I Inspection games [Avenhaus ’12]
I Patrolling games [Alpern ’11]

(Q) How to allocate a fleet of sUAS for network inspection in an adversarial
environment?
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Network and Sensing Models

I E : Set of vulnerable infrastructure components.

I N: Set of locations that can be visited by an sUAS.

I For every location i ∈ N, Ci ∈ 2E represents the subset of components
that an sUAS is capable of monitoring when positioned in location i . For
example, Ci may represent:

I The components that are within a certain distance from i .
I The adjacent edges of node i .
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sUAS Model

I 0 ∈ N: Unique base node from where the
sUAS are sent.

I For every pair of locations (i , j) ∈ N2, let
dij denote the distance to fly from i to j .

I The dij can take into account air space
restrictions, obstacles, height difference
between locations, etc.
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I Homogeneous fuel-constrained sUAS that can fly for up to Dmax miles
before going back to the base node 0.

Feasible Flight Plan

I Feasible flight plan: a 0-closed walk of length at most Dmax .

I Set of feasible flight plans:

F := {(i1, . . . , im) ∈ Nm | i1 = im = 0 and
m−1∑
k=1

dik ik+1 ≤ Dmax , m ∈ N}.
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Network Inspection Problem

(Q) How to maximize the detection performance against a worst case scenario?

I The operator has b1 ∈ N available sUAS.
I σ1: Probability distribution over dispatches, η, of the fleet of sUAS.

I Worst case scenario: Attacker who targets a subset of components
I µ: Attack of up to b2 network components.

Robust optimization problem

Minimize the maximum number of failure events that remain undetected:

(Pinsp) min
σ1∈∆(A1)

max
µ∈A2

Eσ1 [|µ| − |Cη ∩ µ|] .

I |µ| − |Cη ∩ µ| is the total number of failures net the number of detected
failures.
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Solution Approach: Exploration Problem

Auxiliary Problem

What is the minimum number of fuel-constrained sUAS needed to fully explore
all the components?

(Pexp) minimize m

(number of sUAS)

subject to
m⋃

k=1

⋃
i∈wk

Ci = E

(full coverage)

w1, . . . ,wm ∈ F .

(feasible flight plans)

I m∗: Optimal value of (Pexp).

I Can be formulated as a mixed-integer program.
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Detection Guarantees

Theorem

Given an optimal solution of (Pexp), we can construct a randomized strategy σ̃1

such that:

1. The expected number of undetections in the worst case is upper bounded
by:

max
µ∈A2

Eσ̃1 [|µ| − |Cη ∩ µ|] ≤ b2

(
1− b1

m∗

)
.

2. The detection rate, defined as the ratio between the number of detections
and the total number of failure events, in the worst case, is lower bounded
in expectation by:

min
µ∈A2

Eσ̃1

[
|Cη ∩ µ|
|µ|

]
≥ b1

m∗
.

I b1: number of available sUAS

I m∗: Optimal value of (Pexp)

I b2: maximum attack size

M. Dahan, A. Weinert, and S. Amin.“Network Exploration and Inspection Using
Distance-Constrained sUAS”, Submitted, 2016
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Case Study: Complete Network

I Fully connected network.

I 10 locations uniformly placed on a
circle of radius 1 mile.

I The sUAS can travel for 4 miles.

I Vulnerable components are the
network edges that can be
monitored from its end nodes.
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I Optimal solution of (Pexp): w∗1 = (0, 1, 2, 3, 0), w∗2 = (0, 4, 0),
w∗3 = (0, 5, 0) and w∗4 = (0, 7, 8, 9, 0).
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Inspection

I If the operator has 2 sUAS, then σ̃1 is illustrated as follows:
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Conclusion

I Summary
I Resource allocation problem for network inspection using fuel-constrained

sUAS.

I Flexible model that can take into account constraints imposed by the sUAS
platform and the environment.

I Mixed-integer programming formulation for the network exploration
problem.

I Extension to the inspection problem, and performance guarantee on the
detection score in worst-case scenarios.

I Future Work
I Include heterogeneity in the vulnerability or importance of components.

I Account for imperfect (and noisy) information on network state in designing
exploration/inspection strategies.
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