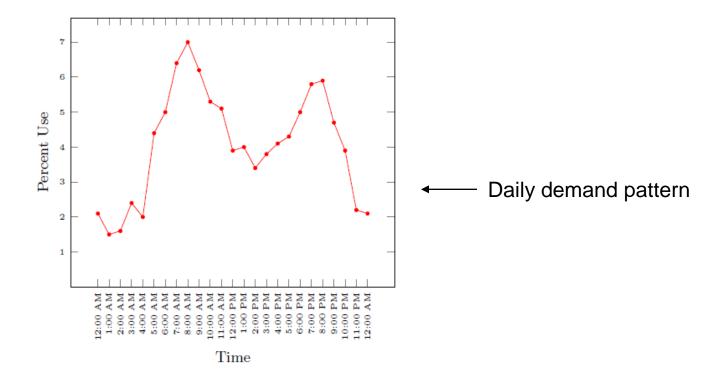


A Game-Theoretic Approach for Selecting Optimal Thresholds for Anomaly Detection in Dynamical Environments

Amin Ghafouri, Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, and Xenofon Koutsoukos Institute for Software Integrated Systems Vanderbilt University

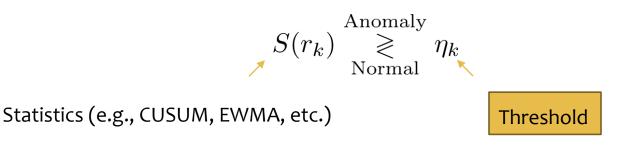
Example: Contamination Attack in Water Distribution System

- * Attackers may **contaminate** water in a water distribution system.
- * The expected damage of contamination is high, when water demand is high.
- Objective: Design a detection framework that detects attacks and minimizes damage.



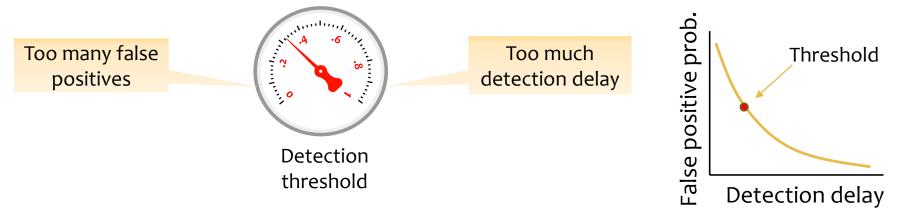
Anomaly Detector

- 1. **Predictor:** Given **previous water quality** measurements (e.g., pH, chlorine), predicts **current measurements**
- 2. Statistical Test: Compares prediction and observation
 - * Compute residual $r_k = ||$ prediction observation ||, then:



Trade-off Between Detection Delay and False Positives

- * **Detector metrics**: Detection delay, False positive probability
- Trade-off between detection delay and FP that depends on threshold



Problem: Find thresholds that minimize losses due to detection delay and false positives considering worst-case contamination attacks.

Stackelberg Game for Optimal Thresholds

Strategic Choices:

Defender's LossLoss due to False PositiveLoss due to Threshold change
$$\mathcal{L}(\boldsymbol{\eta}, k_a, \lambda) = \sum_{k=1}^{T} C_f \cdot FP(\eta_k) + \sum_{k=k_a}^{\sigma(\boldsymbol{\eta}, k_a, \lambda)} \mathcal{D}(k, \lambda) + N \cdot C_d$$
 $\boldsymbol{\uparrow}$ Loss due to AttackAttacker's Payoff: $\mathcal{P}(\boldsymbol{\eta}, k_a, \lambda) = \sum_{k=k_a}^{\sigma(\boldsymbol{\eta}, k_a, \lambda)} \mathcal{D}(k, \lambda)$

Optimal Threshold Problem

* **Optimal Threshold Problem:** Minimizes the defender's loss given that the attacker plays a best-response.

 $\boldsymbol{\eta}^* \in \operatorname*{arg\,min}_{\substack{\boldsymbol{\eta}, \ (k_a,\lambda) \in \mathrm{bestResponses}(\boldsymbol{\eta})}} \mathcal{L}(\boldsymbol{\eta}, k_a, \lambda),$

where $\mathrm{bestResponses}(\eta)$ is the set of best-response attacks against a threshold and

$$\mathcal{L}(\boldsymbol{\eta}, k_a, \lambda) = \sum_{k=1}^{T} C_f \cdot FP(\eta_k) + \sum_{k=k_a}^{\sigma(\boldsymbol{\eta}, k_a, \lambda)} \mathcal{D}(k, \lambda) + N \cdot C_d$$

Algorithm for Computing Optimal Threshold

- The algorithm consists of
 - * 1) A dynamic-programming algorithm for finding minimum-cost thresholds subject to the constraint that the damage caused by a bestresponse attack is at most a given damage bound.
 - * 2) An exhaustive search that finds an optimal damage bound and thereby optimal thresholds.
- * **Theorem:** Algorithm computes **optimal** thresholds that minimize the defender's loss.
 - * Proof) See paper.
 - * Running time: $\mathcal{O}(T^2 \cdot |\Delta|^{|\Lambda|+2} \cdot |\Lambda|^2 \cdot |E|)$

A. Ghafouri, Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, and Xenofon Koutsoukos, "A Game-Theoretic Approach for Selecting Optimal Thresholds for Attack Detection in Dynamical Environments." To be submitted to Automatica.

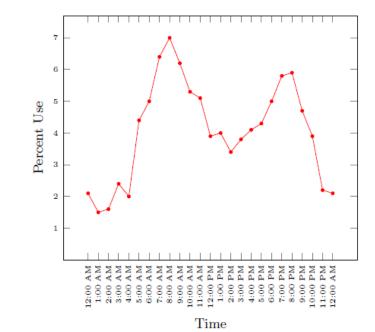
Case Study: Water Contamination

- * 6 weeks of water quality measurements collected by a utility in the US^[1].
- * Attacker **contaminates** water with toxic chemical types $\lambda \in \{1.5, 2, 2.5, 3, 4, 5\}$.

$$x_{\text{contaminated}} = \mathcal{F}(x_k, \lambda, \sigma_k, \mu_k)$$

* **Damage** is a function of chemical type and demand:

$$\mathcal{D}(k,\lambda) = (\lambda - 1) \cdot d(k)$$



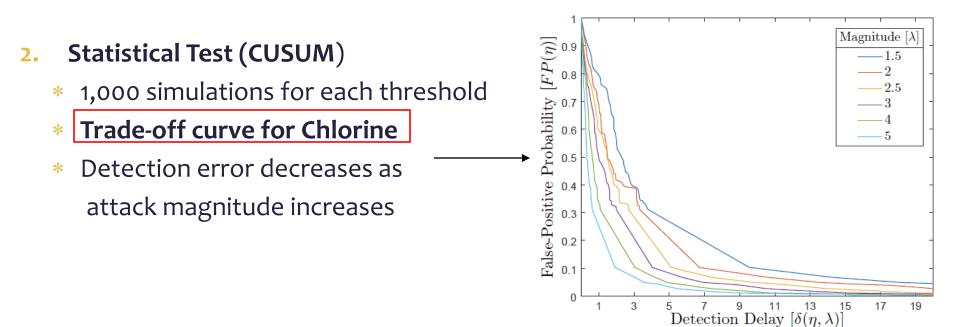
[1] Links, Hot. "CANARY: A Water Quality Event Detection Tool."

Page 8

Anomaly Detector

1. Predictor

- * Feed-Forward Neural Network
- Input: Lagged measurement of target variable and current measurements of other water quality parameters



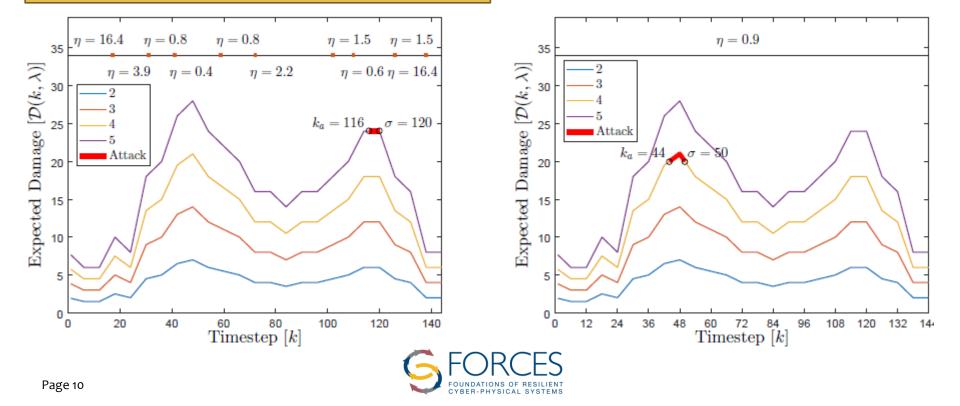
Results

Threshold **decreases** during **critical** periods and **increases** during **non-critical** periods

Fixed Threshold

$$L^* = 222.45$$

 $P^* = 144$

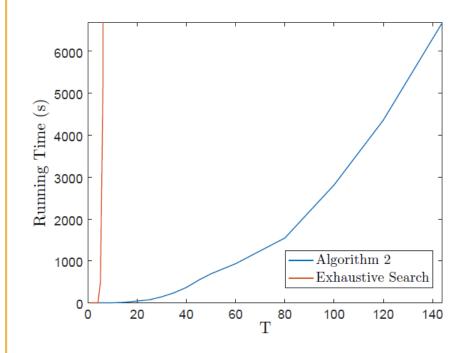


Simulation & Running Time

- Theoretical model vs. Simulation of realistic operation (42 days)
 - * Expected: L = 187.72, P = 120
 - Relative error between theoretical loss and actual loss: 4.26%

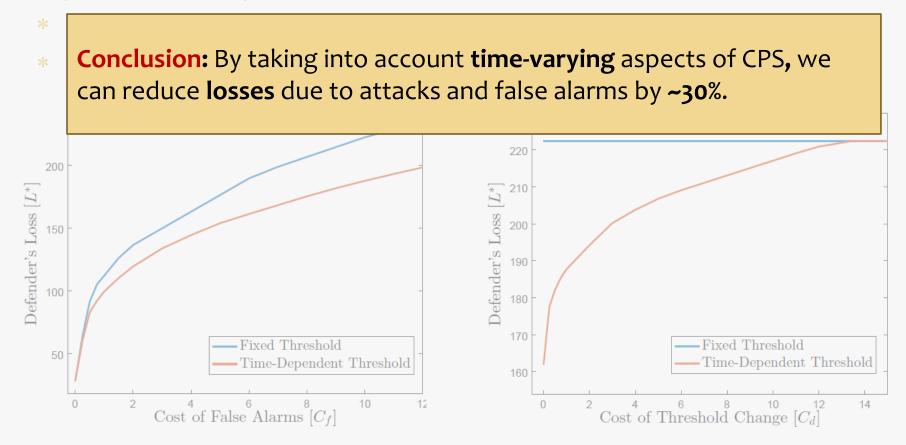
	Loss	Payoff	Delay	Number of FPs
Mean	195.83	110.29	3.71	5.60
STD	4.66	8.87	0.31	0.25
MSE	87.04	127.99	0.12	0.43

 Running Time of timedependent threshold algorithm vs. exhaustive search



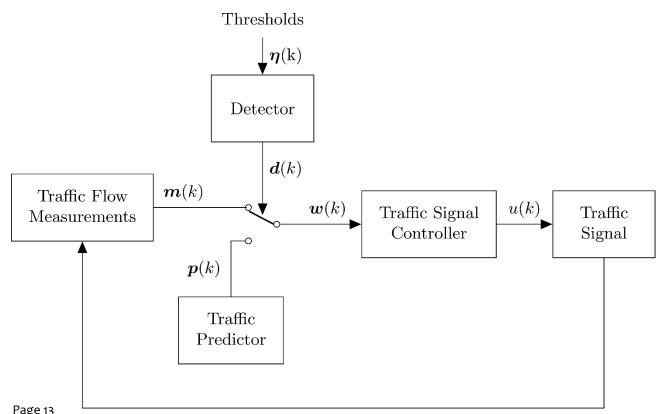
Sensitivity Analysis

- * Time-dependent threshold **reduces** the loss by **up to 30%.**
- * Improvement compared to fixed threshold:



Ongoing Work: Application-Aware Detection In Traffic Networks

Optimal detection can be applied to for example, * real-time control of traffic signals:

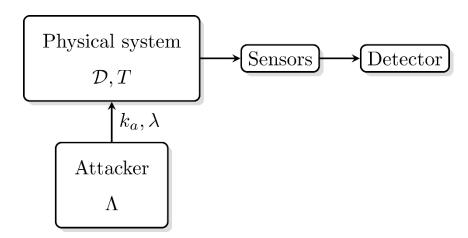


Thank you for your attention! Questions?

System Model

15

- * CPS with a finite time horizon of interest $\{1, \ldots, T\}$
- * Detector is deployed in CPS.
- * Adversaries may perform an attack of type $\lambda \in \Lambda$ (e.g., type of toxic chemical).
- * Attack starts at time k_a
- * **Damage Function**: Represents the **expected damage** $\mathcal{D}(k, \lambda)$ incurred by the system from an **attack** of type λ at time k.



ALGORITHM 1: MINIMUMCOSTTHRESHOLDS(P)

```
1 \forall \boldsymbol{m} \in \Delta^{|\Lambda|}, \ \eta \in E: \operatorname{COST}(T+1, \boldsymbol{m}, \eta) \leftarrow 0
 2 for n = T, ..., 1 do
             forall oldsymbol{m}\in\Delta^{|\Lambda|} do
 3
                    forall \eta_{\text{orev}} \in E do
 4
                           if \bigvee_{\lambda \in \Lambda} \left( \sum_{k=n-m_{\lambda}}^{n} \mathcal{D}(k,\lambda) > P \right) then
 5
                              \mathsf{COST}(n, \boldsymbol{m}, \eta_{\mathsf{prev}}) \leftarrow \infty
 6
                           else
 7
                                   forall \eta \in E do
 8
                                          if \eta_{\text{prev}} = \eta \lor n = 1 then
 9
                                                  S(n, \boldsymbol{m}, \eta_{\text{prev}}, \eta) \leftarrow \text{COST}(n+1, \eta)
10
                                                       \langle \min\{\delta(\eta,\lambda), m_{\lambda}+1\} \rangle_{\lambda \in \Lambda}, \eta \rangle + C_f \cdot FP(\eta)
                                          else
11
                                                  S(n, \boldsymbol{m}, \eta_{\text{prev}}, \eta) \leftarrow \text{COST}(n+1)
12
                                                       \langle \min\{\delta(\eta,\lambda), m_{\lambda}+1\} \rangle_{\lambda \in \Lambda}, \eta \rangle + C_f \cdot FP(\eta) + C_d
                                          end
13
                                    end
14
                                   \eta^*(n, \boldsymbol{m}, \eta_{prev}) \leftarrow \arg\min_n S(n, \boldsymbol{m}, \eta_{prev}, \eta)
15
                                   COST(n, m, \eta_{nrev}) \leftarrow \min_n S(n, m, \eta_{nrev}, \eta)
16
                           end
17
                    end
18
19
             end
20 end
21 m \leftarrow \langle 0, \dots, 0 \rangle, \ \eta_0^* \leftarrow \text{arbitrary}
22 forall n = 1, ..., T do
             \eta_n^* \leftarrow \eta^*(n, \boldsymbol{m}, \eta_{n-1}^*)
23
          \boldsymbol{m} \leftarrow \langle \min\{\delta(\eta_n^*, \lambda), m_\lambda + 1\} \rangle_{\lambda \in \Lambda}
24
25 end
26 return (COST(1, \langle 0, \dots, 0 \rangle, \text{arbitrary}), \eta^*)
```

ALGORITHM 2: OPTIMALTHRESHOLDS