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* Attackers may contaminate water in a water distribution system.

+ The expected damage of contamination is high, when water demand is high.

+ Objective: Design a detection framework that detects attacks and minimizes

damage.
%
=
=
g
A
Page 2

1:00 PR
2:00 P |-
3:00 PM —
4:00 PM
500 PM

GO0 PO
To00 PR

o0 AM
B0 AM |
2:00 AM -
1000 AN —
11:00 AM |-
12:00 PM [~
8:00 PM |-
9:00 PM |-
1000 PR -
11:00 PM [~
12:00 AM [—

5:00 AM |-
G:00 AM —

100 AN
2:00 AM -
500 AM -
00 AN -

12:00 AM |-

Time

<— Daily demand pattern



\A

1. Predictor: Given previous water quality measurements (e.g., pH, chlorine),
predicts current measurements

2. Statistical Test: Compares prediction and observation

« Compute residual T& = ||prediction — observation|| | then:

Anomaly

S(re) 2
Val Normal LN

Statistics (e.g., CUSUM, EWMA, etc.) -
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Trade-off Between Detection Delay and False Positives

Detector metrics: Detection delay, False positive probability
Trade-off between detection delay and FP that depends on threshold
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Problem: Find thresholds that minimize losses due to detection delay
and false positives considering worst-case contamination attacks.
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Strategic Choices:

1) Defender:
Selects time-dependent
threshold for the detector

2) Attacker:
Selects a start time and an
attack type

Defender’s Loss: Loss due to False Positive Loss due to Threshold change
' '
L(m, ke, X) = Yy Op - FP(i) + Z{5 5V Dk, A) + N - C
T
Loss due to Attack
Attacker’s Payoff: |
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+ Optimal Threshold Problem: Minimizes the defender's loss given that the
attacker plays a best-response.

n* e arg min L(n, ka, N),
(kg A) Ebest?lziiesponses(n)

where bestResponses(n) is the set of best-response attacks against a threshold
and

L0, ke, \) = Yy Cp - FP(r) + 5N Dk, ) + N - O
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* The algorithm consists of

“ 1) A dynamic-programming algorithm for finding minimum-cost
thresholds subject to the constraint that the damage caused by a best-
response attack is at most a given damage bound.

+ 2) An exhaustive search that finds an optimal damage bound and thereby
optimal thresholds.

* Theorem: Algorithm computes optimal thresholds that minimize the
defender's loss.

“ Proof) See paper.
“ Running time: O(T2 - |A|M+2 A2 - |E))

A. Ghafouri, Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, and Xenofon Koutsoukos, "A Game-Theoretic Approach for Selecting Optimal
Thresholds for Attack Detection in Dynamical Environments." To be submitted to Automatica.
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+ 6 weeks of water quality measurements collected by a utility in the US[".

+ Attacker contaminates water with toxic chemical types A€ {1.5,2,2.5,3,4,5}.

Lcontaminated — F(xk‘a )‘7 Ok, Mkz)

+ Damage is a function of chemical type and demand:

D(k,N) = (A —1) - d(k)

[1] Links, Hot. "CANARY: A Water Quality Event Detection Tool."
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2.

Predictor

*

Feed-Forward Neural Network

+ Input: Lagged measurement of target variable and current measurements

of other water quality parameters

Statistical Test (CUSUM)
** 1,000 simulations for each threshold

*

Trade-off curve for Chlorine

*
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Detection error decreases as
attack magnitude increases
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Fixed Threshold

L* = 222.45
P* =144

n=109

-
th

Expected Damage [D(&, A)]

-
th

Expected Damage [D(k, A)]

(3]
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* Theoretical model vs. Simulation
of realistic operation (42 days)
+ Expected:L=187.72,P =120
* Relative error between theoretical
loss and actual loss: 4.26%

“ Running Time of time-
dependent threshold algorithm
vs. exhaustive search

Loss Payoff | Delay Ef“;” Pt;er

(s)

Mean | 195.83 | 110.29 | 3.71 .60

1ne

STD | 4.66 8.87 0.31 0.25

MSE | 87.04 127.99 | 0.12 0.43

Running T
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—— Algorithm 2

—— Exhaustive Search
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Sensitivity Analysis

Time-dependent threshold the loss by
Improvement compared to fixed threshold:

Conclusion: By taking into account time-varying aspects of CPS, we
can reduce losses due to attacks and false alarms by ~30%.

Fixed Threshold | l Fixed Threshold
Time-Dependent Threshold L Time-Dependent Threshold
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Optimal detection can be applied to for example,
real-time control of traffic signals:

Thresholds

in(k)

Detector

d(k)

Traflic Flow m(k)

Measurements w(k) Traffic Signal u(k) Traffic
— .
A Controller Signal
p(k)

Traflic
Predictor
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Thank you for your attention!
Questions?
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+  CPS with a finite time horizon of interest {1,...,7}
. Detector is deployed in CPS.

.. Adversaries may perform an attack of type A€ A (e.g., type of toxic chemical).

+  Attack starts at time £k,

+ Damage Function: Represents the expected damage D(k, \) incurred by the
system from an attack of type \ at time k.

SensorsHDetector]

Physical system
D, T

A

ko, A

Attacker
A
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m <+ (0,...,0), n§ « arbitrary
foralln=1....7 do

ny —w(name i)

m <+ (min{d(n;, A).ma + 1} aea
end
return (CosT(L, (0,....0), arbitrary), n*)

ALGORITHM 2: OPTIMALTHRESHOLDS

SearchSpace + {Zi}: 5 Dk, A) | Fkee{1,.... T =1}, 6 €A, A€ A}

forall P € SearchSpace do
| (TC(P),n*(P)) + MINIMUMCOSTTHRESHOLDS(P)
end
P* < argming . SearchSpace TC(P)
return n*(P*)




