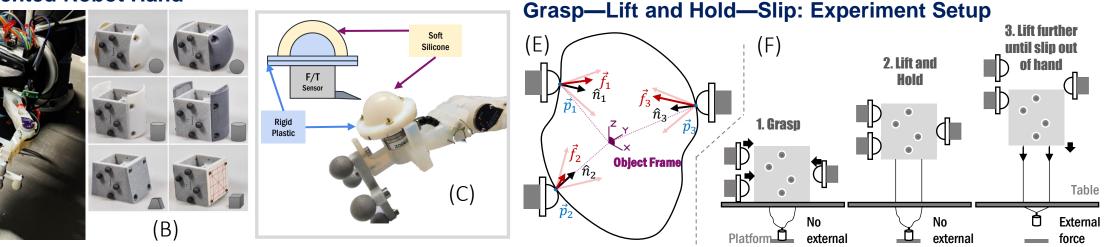


Robust Grasping by Integrating Machine Learning with Physical Models

Award ID#: 1924984 | Poster #: [TODO]

Zixi Liu¹, Alexandre Bayle¹, Robert D. Howe^{1,2}, Lucas Janson¹ ¹Harvard University ² RightHand Robotics, Inc.

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022


Robust Grasping by Integrating Machine Learning with Physical Models

Award ID#: 1924984 | Poster #: [TODO]

Zixi Liu¹, Alexandre Bayle¹, Robert D. Howe^{1,2}, Lucas Janson¹

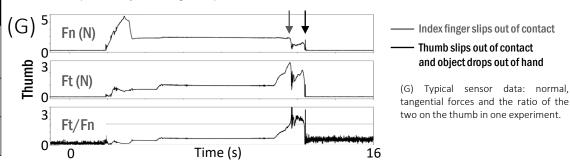
¹ Harvard University^{, 2} RightHand Robotics, Inc.

Highly Instrumented Robot Hand

(A) The robot hand holding an object during an experiment.

(A)

(B) Six objects including 2 spheres, 2 cylinders, one cube, and one pyramid, with precise fiducial mounting for accurate gold-standard calculation. (C) The robot finger has a high precision force/torque sensor (ATI Nano17) and hemispherical fingertip with a 3mm soft silicone padding.

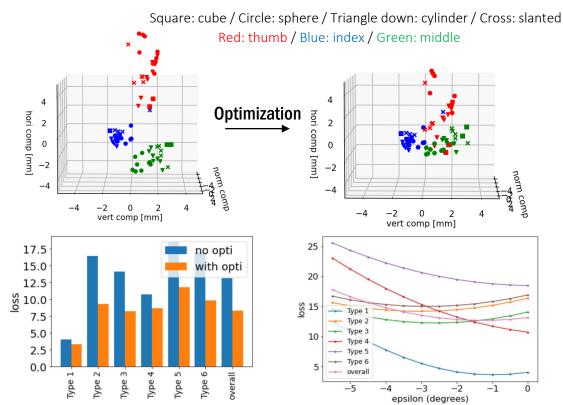

(D) Grasp Parameters	In-Hand	Lab Gold-Standard
Contact Location	Optical tracker (Atracsys Fusion Track 500, resolution: 90 μm RMS) + geometry of fingertip & object	Joint angles (0.0219°/LSB) + kinematic models (±5 mm)
Surface Normal	Optical Tracker + geometry of fingertip & object	Contact location (fingertip frame) + fingertip geometry + kinematics
Contact Force/Torque	Force Torque sensor (ATI Nano17, resolution: 1/160N, 1/32Nmm)	(same as in-hand)

(E) Illustration of grasp parameters where $\vec{p}_1, \vec{p}_2, \vec{p}_3$ are contact locations, $\hat{n}_1, \hat{n}_2, \hat{n}_3$ are surface normal, and $\vec{f}_1, \vec{f}_2, \vec{f}_3$ are contact forces. (F) The experiment process: 1. Grasping the object, 2. lifts and holds the object in air, 3. continues to lift the object until external force is activated and pulls the object, causing it to slip out of the robot hand.

force

force

applied

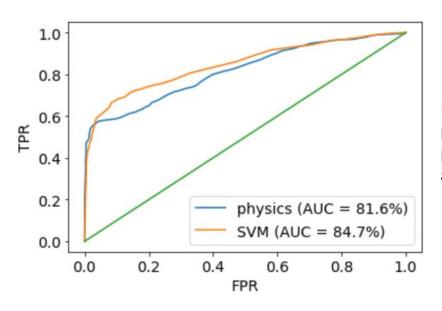

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022

Robust Grasping by Integrating Machine Learning with Physical Models

Award ID#: 1924984 | Poster #: [TODO]

Zixi Liu¹, Alexandre Bayle¹, Robert D. Howe^{1,2}, Lucas Janson¹ ¹Harvard University^{, 2} RightHand Robotics, Inc.

Improved Hybrid Grasp Parameter Estimation



Ground-truth grasp parameters, necessary for this ML-based improvement, are obtained with the Atracsys Optical tracker

Improving Physics and ML Grasping

Goal: grasp stability prediction Want to compare hybrid approach with:

- physics-based approach
- ML approach (SVM)

Hybrid is a work-inprogress with more parameters to add and tune

2022 NRI & FRR Principal Investigators' Meeting April 19-22, 2022