
Resilience Modeling and
Model-based Design for CPS

Gabor Karsai, Daniel Balasubramanian, Abhishek
Dubey, Will Emfinger, Tihamer Levendovszky,
Nag Mahadevan, Subhav Pradhan, Will Otte

Vanderbilt University/ISIS

http://www.berkeley.edu/

Page 2

CPS Cloud:
A Distributed Sensor/Control Network Platform

Sensor [Mobility] Actuator

Processing/Storage Network

Network node with local
processing and storage, sensors,
actuators, and mobility:

Nodes of an ad-hoc network
that has 1+ ground-link and performs
a coordinated sensing/control function

The CPS Cloud is used as a Open
Sensing/Computing/Actuation Platform
where various customer applications
can run, side-by-side.

Examples:
•Smart grid devices and systems
•Swarm of UAVs performing tornado damage
assessment
•Fleet of UUVs performing collecting climate
data from oceans

Challenges:
•Networked, distributed monitoring and control
•Fault resilience, security
•Applications with different trust and security levels
must run side-by-side

Page 3

Cyber-Physical Systems
Faults, cyber effects, and resilience

∗ In CPS faults can develop in and/or cascade to
∗ Physical system
∗ Hardware (computing and communication) system
∗ Software (application and platform) system

∗ In CPS physical and cyber elements are integrated
∗ Many interaction pathways: P2P, P2C, C2C, P2C2P, C2P2P2C
∗ System-level resilience must consider these interactions

∗ In CPS resilience can be facilitated to restore function via
∗ Physical action, including reconfiguration
∗ Cyber restart (node, network, …)
∗ Software adaptation

1.Resilience is a system-level property
2.Desirable to reuse resilience techniques
3.A resilient software platform is needed

Vulnerable to
cyber effects

Page 4

CPS Applications deployed on the Platform

11/13/2014

Applications
- Built from Processes

Processes
- Built from Components

Network nodes
- Host processes

Page 5

Concept Definition Notes

Node Computing node Hosts processes

Link Network link Facilitates interactions

Component Software component Unit of concurrency

Process Software process Hosts components

Application Software applications Consists of processes

Interaction Component interactions Pub/sub or service (sync/async)

Device Physical device Assigned to node

Function Functionality Decomposable with dependencies

CPS Cloud Application Platform
Architecture ‘Language’

11/13/2014

Page 6

Resilient CPS Platform Concepts
Metamodel as UML class diagram

11/13/2014

Page 7

∗ A System function can be allocated to various (combinations of)
providers: Applications / Processes / Components

∗ Processes / Components can be allocated to various
(combinations of) platform Nodes

∗ When a Node / Link / Process / Component fails (compromised),
functionality can be restored by an
∗ Change allocation of functions to providers, or
∗ Change allocation of providers to platform nodes

Why is it resilient?

11/13/2014

Page 8

Evaluating CPS Architectures

∗ Architecture: a collection of architectural variants captured
via configuration constraints that define a configuration
space.

∗ Resilience of an architecture:
∗ Capability of eventual recovery from loss of functionality

∗ Evaluation via a resilience metric defined as pair of integers
1. Measures the margin of recovering capabilities in the worst case

(redundancy of the system along the most vulnerable/critical
path)

2. Measures the margin of recovering capabilities in the optimistic
case (overall redundancy of the system)

Architecture: set of related designs.

Page 9

Definitions

∗ Component availability refers to the availability of a software or
hardware component for use at any time during operation. I.e., it is
deployed and is active.

∗ Function availability refers to the availability of a function. For a
function to be available, all the components required for the
realization of this function should be available.

∗ If a function can be supported even when a component becomes
unavailable, then there is active redundancy in the function with
respect to that component.

∗ If a function can be carried out even when a component becomes
unavailable by activating/deploying another set of components or
migrating the affected component to another node, then there is
deployment redundancy in the function with respect to that
component.

Page 10

∗ Definition
∗ m1: The worst case resilience is defined as the least number of failures that will make

supporting the mission infeasible.
∗ m2: The best case resilience is defined as the maximum number of failures that can

be sustained while supporting the mission remains feasible

∗ Measure the level of active and deployment redundancy in the system
∗ The set of deployment constraints imposed on the system and the number of

alternative choices affect these numbers.

∗ Examples of deployment constraints:
∗ High-res imaging component requires a node with HR camera device.
∗ A node cannot host more than one instance of a high performance computing component.
∗ Application A’s processes must never be collocated on a node with application B’s.

Resilience metric [m1, m2]

Page 11

Calculating the resilience metric

∗ Encode the metric calculation problem as a Satisfiability Modulo
Theory (SMT) problem over integers
∗ SMT problems are Boolean satisfiability problems (SAT) where some

of the binary variables are replaced by predicates over a suitable set
of non-binary variables. A predicate is a binary-valued function of
non-binary variables that relies on a ‘theory’.

∗ Use an SMT solver to compute the solutions
∗ SMT solution = valuation of binary variables

∗ Metric: number of solutions (for the worst/best case)

Page 12

Modeling the resilience problem
Domain model

Concept Description

Component (instances) Deployed software component instances that operate at
the same time. The smallest software unit that can fail. Pre-
deployed, inactive backups are not modeled as component
instances. Binary resources can be modeled as component
instances, too.

Nodes Hardware nodes that are capable of executing component
instances.

Links Interaction links between the nodes. Provided as an
adjacency matrix of the graph consisting of nodes and links
between them.

Countable component
resources

Provided as an integer matrix: ccr[i,j] means the resource
requirement of component i of resource j

Countable node resources Provided as an integer matrix: cnr[i,j] means the availability
of resource j on node i.

Actors Defines component groups. If an actor fails, all included
component fails.

Page 13

Modeling the resilience problem
Constraints

Constraints Description Examples

Component to
node constraints

Describes the conditions under
which a component can be
deployed onto a node

Collocation constraints (C1 and C2
must/cannot be deployed on the
same node); C1 must be deployed
on N1.

Component to
component
dependencies

A component’s availability is
dependent on the availability of
another component.

An image processor component
Cim needs a camera component Cc.

Interaction
constraints

In order for two components to
interact, there must be a link
between the nodes they are
deployed on.

An image processor component
Cim needs a connection to
communicate with camera
component Cc if they are deployed
on a separate node.

Function
realization

Describes the dependency
between a function and the
components it uses.

Function F1 is realized by
components C1 and C2.

Functional
decomposition

Describes the dependency
between functions.

Function F1 uses functions F2 or F4.

Resilience metric calculations
An example

Page 15

Satellite Resources

∗ Three similar satellites
∗ Sat 1

∗ HR Camera
∗ LR Camera
∗ GPU
∗ Ground link

∗ Sat 2
∗ HR Camera
∗ GPU
∗ Ground link

∗ Sat 3
∗ LR Camera
∗ Ground Link

∗ All satellites have wireless links that they can use to communicate with each other
∗ Some satellites have a ground link

Page 16

Applications

∗ Cluster Flight Application (CFA) – Flight Control Software
∗ GroundInterface: An actor that provides access to the ground

station. The ground uses this actor to send commands to the cluster.
∗ SatelliteBusInterface: An actor that provides access to the

satellite bus hardware
∗ TrajectoryPlanner: Runs the trajectory planning service. It receives

the commands from ground and then updates the orbit.
∗ OrbitManager: Runs the control loop. Disseminates position to other

satellites and commands the satellite thruster via the bus interface to
adjust the orbit as required.

Page 17

Applications (continued)

∗ Wide area imaging application –
Sensor Software
∗ Uses high resolution and/or low

resolution cameras different nodes
to create a combined image.

∗ Each satellite runs an image
grabber component.
∗ It can provide service either

through the high resolution service
or low resolution service or both,
depending on the hardware
available on the satellite.

∗ Only one instance of image
processor component runs in the
cluster at any time.
∗ It can be redeployed as required.

Page 18

Architectural and Resource Requirements

Physical Resource Requirements
∗ GroundInterface requires GroundLink
∗ ImageGrabber
∗ LR_Img: LR_CAMERA (LR_img port requires LR camera)
∗ HR_Img: HR_CAMERA (HR_img port requires HR camera)

∗ ImageProcessor 1,2 requires a GPU
∗ One instance of the CFA runs on each node that requires the
OrbitManager and SatelliteBusInterface from the
same node.

∗ Every node is required to have a camera
∗ TrajectoryPlanner requires 40MB

Page 19

Functional requirements

∗ Represent the functional decomposition for the mission
∗ Cluster flight function
∗ Wide area imaging function

∗ Map functions to application/component instances

∗ Failure of one component/hardware resource/network link is

used to compute whether the mission function is unavailable.
∗ Thereafter an alternative configuration (if available) can be

chosen to recover the functionality.

Page 20

Results:
Resilience Metric and Reconfiguration Scenarios

∗ Metric = [2,23]
∗ Assumption: all functions are required
∗ The system is 2-fault tolerant, but can operate as many as 23 faults

Reconfiguration Scenarios:
∗ Complete failure of Sat2

∗ ImageProcessor on Sat2 is out, another ImageProcessor on Sat1 or
Sat3 should be activated.

∗ Failure of GPU on Sat1
∗ GPU is required by the ImageProcessor
∗ Therefore, a reconfiguration is required which activates image processor

on Sat3
∗ Failure of GroundLink on Sat 1

∗ No reconfiguration is required. The ground command is disseminated by
either Sat2 or Sat3 via pub/sub ports via the network

Page 21

Example: Initial Configuration
Sat1 Sat2 Sat3

GPU GPU GPU

Page 22

Example: Fault Appears in GPU of Sat1
Sat1 Sat2 Sat3

GPU GPU GPU

Page 23

Example: Reconfigure to ImageProcessor3
Sat1 Sat2 Sat3

GPU GPU GPU

Page 24

Towards implementing resilience

11/13/2014

Configuration
Database*

Deployment/Configuration Engine

Solver Fault
Detector

Manager: Leader
election, coordinator

Page 25

∗ Models are translated into deployment plans and configuration
spaces that are loaded into a configuration database

∗ The database is fault tolerant (via active replication)
∗ Each node includes:
∗ Deployment and configuration engine (software manager)
∗ Fault detector (detects local anomalies and remote node loss)
∗ Solver (to re-compute configuration solution)
∗ Manager (to do leader / controller election and coordination)

∗ Any node/process/component/link can fail (become
compromised)  the system recovers

Towards implementing resilience

11/13/2014

Page 26

∗ A resilient architecture can be modeled as: software
components and architecture + hardware platform + functions +
constraints

∗ A constraint solver can calculate
∗ The resilience metric (to compare architectures)
∗ Novel configuration/s for the system (to do reconfiguration)

∗ Resilience implementation relies on:
∗ Robust supervisory layer / database/ platform that manages system

reconfiguration

Summary:
Resilience Modeling and Implementation

11/13/2014

Page 27

∗ Effective, rich, and usable modeling paradigm/s for engineering resilient
CPS systems
∗ Modeling resilience in the physical system through redundancy

∗ Verification
∗ Scalable analysis approaches to compute resilience metrics and properties

∗ Prototyping specific platform services needed for cyber-resilience:
detection, diagnosis, mitigation -- automation
∗ Detecting anomalies and cyber effect signatures
∗ Isolating effected processes, nodes, links
∗ Selecting an appropriate mitigation strategy

∗ Implementation/experimentation in testbeds: C2WT, DREMS, ROS,…

Resilience challenges

11/13/2014

	Resilience Modeling and Model-based Design for CPS
	CPS Cloud:�A Distributed Sensor/Control Network Platform
	Cyber-Physical Systems�Faults, cyber effects, and resilience
	CPS Applications deployed on the Platform
	CPS Cloud Application Platform�Architecture ‘Language’
	Resilient CPS Platform Concepts�Metamodel as UML class diagram
	Why is it resilient?
	Evaluating CPS Architectures
	Definitions
	Resilience metric [m1, m2]
	Calculating the resilience metric
	Modeling the resilience problem�Domain model
	Modeling the resilience problem�Constraints
	Resilience metric calculations
	Satellite Resources
	Applications
	Applications (continued)
	Architectural and Resource Requirements
	Functional requirements
	Results: �Resilience Metric and Reconfiguration Scenarios
	Example: Initial Configuration
	Example: Fault Appears in GPU of Sat1
	Example: Reconfigure to ImageProcessor3
	Towards implementing resilience
	Towards implementing resilience
	Summary: �Resilience Modeling and Implementation
	Resilience challenges

