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From Action Webs to Resilient CPS

Resilient/High Confidence Networked
Control

Fault-tolerant networked control
Limits on stability, safety, &
optimality
Scalable model predictive control

Security & Resilient Control
Availability, Integrity, &
Confidentiality
Graceful degradation

Economic Incentives
Incentive Design for investing in
security
Interdependent Risk Assessment &
Cyber Insurance



Societal Scale CPS

A complex collection of sensors, controllers, compute nodes,
and actuators that work together to improve our daily lives

From very small: Ubiquitous, Pervasive, Disappearing,
Perceptive, Ambient
To very large: Always Connectable, Reliable, Scalable,
Adaptive, Flexible

Emerging Service Models
Building energy management
Automotive safety and control
Management of metropolitan traffic flows
Distributed health monitoring
Smart Grid
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Smart, Connected Infrastructure

Infrastructure

Users Aggregators

Regulators1. Load forecasting via NILM
2. Parking pricing by neighborhood



Operational Efficiency Informed by Usage Patterns

Infrastructure

flow
networks

UsersUsers Aggregators

Regulators1. Load forecasting via NILM
2. Parking pricing by neighborhood



Data Disaggregation

(a) improved load forecasting; (b) improved economic models

R. Dong, et al., IFAC, 2014.; R. Dong, et al., Allerton, 2013; R. Dong, et al., IEEE CDC, 2013;



Modeling Urban Mobility Using Data

Data: parking transactions, meter loca-
tions, land use, economic indicators, etc.

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

System of Queues: M/G/n
queues models for each cluster

Game Theory: supermarket game

Learning

Downtown Seattle, 2013

Downtown Seattle, 2013
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Data: parking transactions, meter loca-
tions, land use, economic indicators, etc.

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

System of Queues: M/G/n
queues models for each cluster

Game Theory: supermarket game

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

Downtown Seattle, 2013

Learn natural neighborhoods
for more effective pricing

Downtown Seattle, 2013
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Modeling Urban Mobility Using Data

Data: parking transactions, meter loca-
tions, land use, economic indicators, etc.

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

System of Queues: M/G/n
queues models for each cluster

Game Theory: supermarket game

Features: blockface utilization

Machine Learning: Hodge decomposi-
tion ranking

Downtown Seattle, 2013

Belltown, 2015

Learn source and sink blockfaces to de-
termine locations for validation studies

Downtown Seattle, 2013
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Closing the Loop — Integrating the User

Infrastructure

flow
networks

UsersUsers Aggregators

Regulators
1. Privacy service contracts
2. Information in parking



Quantifying the Efficiency–Privacy Tradeoff

DLC
Scheme

HVAC Usage

disaggregation

Efficiency-Privacy Tradeoff:
DLC performance degrades as
privacy–preserving metering is
increased.
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R. Dong, A. Cardenas, L. Ratliff, H. Ohlsson, S. Sastry. IEEE TSG, 2014 (under review, arxiv:1406.2568)



How do people value their data? — Privacy as Good
Contribution: Designed service contracts differentiated by value of data to
balance efficiency-vulnerability tradeoff

Results:
– Characterized contracts with privacy
loss risk modeled using privacy
metric and abstraction of loss.

– High-type free-rides ⇒ regulation to
realize the social optimum.

– Privacy loss risk ⇒ incentive for
investing in insurance.

– Designed insurance contracts for
risk-averse utility company/
consumer.

Impact:
– Privacy loss risk motivates study of security-insurance investment.
– User valuations of data need to be factored in to improve efficiency.

L. Ratliff, et al. arxiv:1409.7926v3, 2014; L. Ratliff, et al. CDC 2014.



Queuing Game Framework for Urban Parking

Data: parking transactions, meter loca-
tions, land use, economic indicators, etc.

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

System of Queues: M/G/n
queues models for each cluster

Game Theory: supermarket game

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

System of Queues: M/G/n queue
model for each cluster

Game Theory: supermarket game

LearningLearning

Framework to Design Feedback



Supermarket Game & the Value of Information
Value of Information: expected reduction in ex-
pected waiting time due to a gain in information

$ for Info: mean service
time, arrival rate, expected
occupancy, price, etc.

Po Pj

$ for Info: mean service
time, arrival rate, expected
occupancy, price, etc.

queue 1 queue 2 queue n

Neighborhoods

jockey

off street
parking

balk

determine equilibrium as
a function of information
determine equilibrium as
a function of information

select information
structure in order to

achieve social optimum

Ratliff, et al. IEEE CDC 2016; Calderone, et al. IEEE CDC, 2016



To Join or Not to Join

Balk Observe free

λ

Ub = 0

(or outside opt)

U j = R− Cw(k+1)
cµ

− Cp
µ

nb =
⌊

Rµc−Cpc
Cw

⌋
R− Cwk

µc −
Cp
µ
= 0

(balking level)



Social Welfare the Effects of Balking & Price

Usw(n) = λ ∑
n−1
k=0 pk(n)

(
R− Cw(k+1)

µc − Cp
µ

)
Thm: There exists nso maximizing Usw(n)
and nso 6 nb so that Usw(nb) 6 Usw(nso).

Design price: Ĉp =Cp +∆Cp

Prop: The pricing Ĉp that achieves the socially optimal balking
level nso is determined by αnso 6

Ĉp
µ
6 αnso−1 where αk = R− Cw(k+1)

µc .

congested limited balking: e.g. ncl = 20% total volume

Prop: The pricing Ĉp that achieves a congestion limited balking
level ncl is determined by αncl 6

Ĉp
µ
6 αncl−1 where αk = R− Cw(k+1)

µc .

Prop: If ncl 6 nb (user selected), then Usw(nb)6Usw(ncl).

Prop: If ncl 6 nso , then Usw(ncl) =Usw(nso).
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To Observe or Not to Observe

Balk Join Observe

λ βk = R− Cw(k+1)
cµ

− Cp
µ

Pb

Ub = 0

(or outside opt)

Pj

U j =
n−1
∑

k=0
pkβk

Po

Uo =
nb−1
∑

k=0
pkβk−Co

λ

Balk Join Observe

Pb Pj Po

Ub = 0

(or outside opt)
U j =

n−1
∑

k=0
pkβk Uo =

nb−1
∑

k=0
pkβk−Co

λ

µ: service rate
c: # spots

R: reward
Cp: parking cost

Cw: waiting cost
n: capacity

βk = R− Cw(k+1)
cµ

− Cp
µ

Ratliff, et al. To Observe or Not to Observe: Queuing Game Framework for Urban Parking. IEEE CDC 2016
(submitted)



On-Street vs. Off-Street Parking Example
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c = 30,µ = 1
120 (service rate)

λ ∈ [0.025,0.225] (arrival rate)

ρ = λ

cµ
(traffic intensity)

As ρ → 1, it seems
|Pj − Po| → ε

P∗b = 0 for ρ ∈ [0,0.8]
while Pso

b > 0 for ρ > 0.15

Nash: less people use
off-street parking ⇒

spend more time circling



Congestion vs. Occupancy
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drivers arrive, if block is full
they choose a new block

uniformly at random and there
is a travel time along links

Cp = $0.05/min, Co = $3.85

Cw = $1.5/min, Co f f = $0.9/min

Ratliff, et al. To Observe or Not to Observe: Queuing Game Framework for Urban Parking. IEEE CDC 2016 (submitted)
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Data as a Commodity

Infrastructure

flow
networks

UsersUsers AggregatorsAggregators

Regulators1. Sharing economy &
platform markets

2. Open data initiatives



Shared Economy & Platform Markets

A smart infrastructure empowered by the Internet of Things (IoT)
has at its core an ecosystem consisting of a shared economy.



Learning & Optimization with Strategic Sources

Strategic Sources

estimation/
learning task

e.g. learn decision-
making model

automation
task

e.g. building automation
for demand response

incentive/information (e.g. routing suggestions, money, etc.)



Abstraction of the Adaptive Incentive Design Problem

Non–Cooperative Game

Planner, fP(x,v)

Agentn

Agent1

Agent2

fn(x,γ(x);θn)

f1(x,γ(x);θ1)

f2(x,γ(x);θ2)

Utility Learning
(Estimation)

{xi}n
i=1response

agent

Incentive Design
(Control) {θ̂i}n

i=1

parametersparameters

mechanism



Closing–the–Loop via Adaptive Incentive Design
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Convergence Results — Adaptive Control/Online Learning

Thm: Suppose that the algorithm is persistently ex-
citing and stable (c2I 6 ξ T ξ 6 c1I), then θ̂ → θ .

A1: For all agent preferences θ , there exists incentive
parameters s.t. the agents play the desired strategy.

parameter
convergence

Thm: Agent strategies and incentive parameters converge
to the desired values (xi→ xd

i and ui→ ud
i ).

Thm:
[
xd non-degenerate differential Nash (detDω(xd) 6= 0)

and ‖θ̂ −θ‖< ε
]
=⇒ ∃ N.E. x∗ close to xd . Nash

Thm: If x∗ is stable (Dω(x∗) > 0), then users will converge
to x∗ under tâtonnement.

ẋ = ω(x,u)T =

D1 f1(x,u)
...

Dn fn(x,u)

 (uncoupled dynamics)
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Noise: Under classical assumptions, convergence with noise!

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON, 2015.



Social Game — Robust Utility Learning

Strategic Sources

1.4 Games’ Interface / Web Portal 
 
 
Participants of our experiment (20 persons in total) have access to an online social game 
platform, which is a website that is password protected, and only the research group 
along with the participants have access to it. Each participant has a personal username in 
order to login to the web portal. This website, display the energy usage of all participants 
as well as to the shared energy sources light and temperature levels in 406 Cory Hall. 
Also, the website gives to each participant information about his / her total points along 
with instantaneous control of the shared lights / temperature.  
 
Below there are figures that show the web portal of our experiment.  
 

 
Figure 1: Map view of the office along with the light / temperature zones 
 

estimation/
learning task

e.g. learn decision-
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Robust Utility Learning: Bootstrapping, Boosting, Bagging

1. Use equilibrium conditions for differential Nash equilibria, to construct
a Constrained Generalized Least Squares problem in agent parameters.

Y = Xθ + ε cov(ε|X) = G � 0

G−1/2Y = G−1/2Xθ +G−1/2ε

2. Wild bootstrapping and bagging:
we have little data and we expect bias.

G is unknown.
We impose structure;
let’s us learn coalitions!

θGLS, Ĝ

Generate N pseudo-datasets;
fit N weak FGLS estimators

Ỹ = XθGLS + Ĝ1/2ε θBagged = 1
N ∑

N
k=1 θ k

FGLS
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1.4 Games’ Interface / Web Portal 
 
 
Participants of our experiment (20 persons in total) have access to an online social game 
platform, which is a website that is password protected, and only the research group 
along with the participants have access to it. Each participant has a personal username in 
order to login to the web portal. This website, display the energy usage of all participants 
as well as to the shared energy sources light and temperature levels in 406 Cory Hall. 
Also, the website gives to each participant information about his / her total points along 
with instantaneous control of the shared lights / temperature.  
 
Below there are figures that show the web portal of our experiment.  
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Mixture of Utilities — Myopic Decision-Making

θ1 θ2 θ3

f (x) = φ(x)+∑
M
j=1 π j(x,ξ j)ψ(x) = φ(x)+∑

M
j=1

exp(−ξ>j x)

∑
M
k=1 exp(−ξ>k x)

θ jψ(x)

u1 u2 u3 u4

Not only learn utilities, but
also how players are correlated

ψ(x) = ∑
N
`=1

exp(u`(x))
∑

N
k=1 exp(uk(x))

Luce-Shepard
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Luce-Shepard

θi: different ordering of preferences
over modes; ui: utility of mode i
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Open Data Initiatives and Data Sharing Mechanisms

Many cities are adopting open data policies in which all data
collected by municipal service providers is made available.

At the same time, third-party companies are emerging on the
scene to provide services to cities (e.g. platform-as-a-service). In
addition, companies often want to share data with researchers.

Can we generate mechanisms that deconflict open
data policies with intellectual property protection?



Privacy Guarantees for Data Exchange at Scale

3rd–party
service
provider

e.g. differential privacy

ε,δ

big data platform as a service



Old School Regulation

InfrastructureInfrastructure

flow
networks

UsersUsers AggregatorsAggregatorsAggregators

RegulatorsRegulators



Breakin’ the Law, Breakin’ the Law,. . .

Infrastructure

flow
networks

UsersUsers AggregatorsAggregators

RegulatorsRegulators



Technologically-Aware Regulation and Policies

Infrastructure

flow
networks

UsersUsers AggregatorsAggregators

RegulatorsRegulators



Infrastructure Evolution

The shared economy will require service providers to evolve in
order to provide improved services that are competitive in the
new marketplace

Companies emerging that
capitalizing on streaming
data.
Forcing existing
infrastructure systems to
modify their operational
model in order to survive.

Not Just Existing Infrastructure: New infrastructure systems are
emerging! (e.g. UAVs+UTM monitoring health of road, water,
power networks)



Towards a Theory of RC + EI

Issues Addressed
Incentive Design
Disaggregation and Fundamental
Privacy Bounds
Privacy Aware Contract Design: Free
Riding and Adverse Selection
Value of Information in Urban Mobility
Adaptive Incentive Mechanisms

Next Steps
Modeling New Market Mechanisms
Integrating DM models into RC
Incentivize investments in security,
privacy

Sensor Actuator
Network 

Physical Infrastructures
Buildings

Transportation
Water & Gas

Electric Power

Detection and Regulation

Control Network

Diagnosis, Response, and Reconfiguration

Reliability and Security Risk Management

Attacks Defenses Faults

Internet



Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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