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From Action Webs to Resilient CPS

Resilient/High Confidence Networked

Control
m Fault-tolerant networked control

m Limits on stability, safety, &
optimality
m Scalable model predictive control

m Security & Resilient Control

m Availability, Integrity, &
Confidentiality
m Graceful degradation

m Economic Incentives

m Incentive Design for investing in
security

m Interdependent Risk Assessment &
Cyber Insurance
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Societal Scale CPS

A complex collection of sensors, controllers, compute nodes,
and actuators that work together to improve our daily lives
m From very small: Ubiquitous, Pervasive, Disappearing,
Perceptive, Ambient

m To very large: Always Connectable, Reliable, Scalable,
Adaptive, Flexible

Emerging Service Models

Building energy management

Automotive safety and control

Distributed health monitoring

[
m Management of metropolitan traffic flows
[
m Smart Grid
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Smart, Connected Infrastructure




Operational Efficiency Informed by Usage Patterns




Data Disaggregation
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“Indirect” Feedback

(Provided after Consumption Occurs)
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[ (a) improved load forecasting; (b) improved economic models ]




Modeling Urban Mobility Using Data

Data: parking transactions, meter loca- @SDOT

tions, land use, economic indicators, etc.

Seattle Department of Transportation




Modeling Urban Mobility Using Data

Data: parking transactions, meter loca- @SDOT

tions, land use, economic indicators, etc.

Seattle Department of Transportation

Features: arrival rates, geo-location,

histogram of parking durations
Learning

Machine Learning: weighted clustering




Modeling Urban Mobility Using Data

Downtown Seattle, 2013

Data: parking transactions, meter loca-
tions, land use, economic indicators, etc.

y

Features: arrival rates, geo-location,
histogram of parking durations

Machine Learning: weighted clustering

Learn natural neighborhoods
for more effective pricing




Modeling Urban Mobility Using Data

Data: parking transactions, meter loca-
tions, land use, economic indicators, etc.

(Features: blockface utilization ]

y

‘Machine Learning: Hodge decomposi-
tion ranking

Learn source and sink blockfaces to de-
| termine locations for validation studies |

Belltown, 2015
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Emerging Data Market — Closing the Loop



Closing the Loop — Integrating the User

Net Spend et Emissions
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Quantifying the Efficiency—Privacy Tradeoff
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Efficiency-Privacy Tradeoff:
DLC performance degrades as - +
privacy—preserving metering is -
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R. Dong, A. Cardenas, L. Ratliff, H. Ohlsson, S. Sastry. IEEE TSG, 2014 (under review, arxiv:1406.2568)




How do people value their data? — Privacy as Good

Contribution: Designed service contracts differentiated by value of data to

balance efficiency-vulnerability tradeoff

Results:

— Characterized contracts with privacy
loss risk modeled using privacy
metric and abstraction of loss.

— High-type free-rides = regulation to
realize the social optimum.

— Privacy loss risk = incentive for

vigh-Privacy

metering . . o g
investing in insurance.
? — Designed insurance contracts for
dectriciy risk-averse utility company/
«_ _Power Company_ _, consumer.
Privacy loss risk motivates study of investment.

User valuations of data need to be factored in to improve efficiency.

L. Ratliff, et al. arxiv:1409.7926v3, 2014; L. Ratliff, et al. CDC 2014.



Queuing Game Framework for Urban Parking

[Data: parking transactions, meter loca- ] @SDOT

tions, land use, economic indicators, etc.

y

Features: arrival rates, geo-location,
histogram of parking durations

Seattle Department of Transportation

Learning

Machine Learning: weighted clustering

System of Queues: M/G/n queue
model for each cluster
Framework to Design Feedback

Game Theory: supermarket game



Supermarket Game & the Value of Information

E E Value of Information: expected reduction in ex-
s o ¢ pected waiting time due to a gain in information

$ for Info: mean service
time, arrival rate, expected
occupancy, price, etc.

balk

off street
parking

B0

aly
y y
y iy uy
G i G

{

queue 1 ][ queue 2 ]...

Neighborhoods



To Join or Not to Join
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[ (1) = A X020 pi(n )(R_%_%) ]

[ Thm: There exists ny, maximizing Uy, (n) ]

and ny, < np so that Ug,(np) < Ugy(ngo).




Social Welfare the Effects of Balking & Price

Us (1) = A X3 pi(n) (R e %)

Thm: There exists ny, maximizing Uy, (n)

6] oy < 1 5 R Uhnpls) € ool Design price: C, =C, +AC,

Prop: The pricing C‘p that achieves the socially optimal balking

. . ¢ :
level ny, is determined by ¢, < 7” < Qy,,—1 Where o =R — w




Social Welfare the Effects of Balking & Price

Us (1) = A X3 pi(n) (R e %)

Thm: There exists ny, maximizing Uy, (n)

6] oy < 1 5 R Uhnpls) € ool Design price: C, =C, +AC,

Prop: The pricing C‘p that achieves the socially optimal balking

. . ¢ :
level ny, is determined by ¢, < 7” < Qy,,—1 Where o =R — w

congested limited balking: e.g. n. = 20% total volume

Prop: The pricing C'p that achieves a congestion limited balking

. : ¢y w
level n; is determined by o, < 77 < 04,1 where o = R — %

J




Social Welfare the Effects of Balking & Price

Usn(n) = 2 54— pi(n) (R — Sl _ &)

Thm: There exists ny, maximizing Uy, (n)

6] oy < 1 5 R Uhnpls) € ool Design price: C, =C, +AC,

Prop: The pricing C'p that achieves the socially optimal balking

. . ¢
level ny, is determined by ¢, < TP < Qy,,—1 Where o =R — w

congested limited balking: e.g. n,; = 20% total volume

. : ¢
level n.; is determined by @, < 7F < O, —1 Where 0 = R — %

Prop: If n, < ny (user selected), then Uy, (np) < Usy(ng).

[Prop: The pricing C'p that achieves a congestion limited balking ]

Prop: If ny < ny , then Uy, (ne) = Ugy(ngo)- ]




To Observe or Not to Observe
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Ratliff, et al. To Observe or Not to Observe: Queuing Game Framework for Urban Parking. IEEE CDC 2016
(submitted)



On-Street vs. Off-Street Parking Example
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Congestion vs. Occupancy
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Emerging Data Market — Sharing Economy



Data

as a Commodity
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Shared Economy & Platform Markets

A smart infrastructure empowered by the Internet of Things (loT)
has at its core an ecosystem consisting of a shared economy.
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Strategic Sources
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Abstraction of the Adaptive Incentive Design Problem

e e Y !
E \ Agentl_' Filry0:61) |
E \ Agentz",..fz(;;:y(x);ezl 1
) : ;
' 8 ]
hani BT S | agent
mechanism A6 A . '
: L Agent,, £ (5 (0): 60 ) : response

........................................................

Planner, fp(x,v)

Incentive Design parameters Utility Learning
-—
(Control) (Estimation)

.........................................................



Non—Cooperative Game

Play Nash
xt € argmin{®(x)0 +¥(x)u}
or
Play myopically
xT=®(x)0 +¥(x)u

________________________________________________________

Planner, fp(x,v)

Utility Learning
(Estimation)

Incentive Design
(Control)

_________________________________________________________
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Play Nash
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Closing—the—Loop via Adaptive Incentive Design

Play Nash 5
xT € argmin{®(x)6 +¥(x)u}|

or
< Play myopically >'
xT=®(x)0 +¥(x)u

$

mechanism

........................................................

Planner, fp(x,v)

given 1, select ut s.t. parameters
xt =x4 and y(x?) =

.........................................................



Closing—the—Loop via Adaptive Incentive Design

Play Nash 5
xT € argmin{®(x)6 +¥(x)u}|

or
< Play myopically >'
xT=®(x)0 +¥(x)u

$

mechanism

agent
response

........................................................

Planner, fp(x,v)

given O, select u™ s.t. parameters 6t =Tlg(6 —nVL(0))
—
xt =x? and y(x?) =14 £(8): loss function

.........................................................



Al: For all agent preferences 0, there exists incentive
parameters s.t. the agents play the desired strategy.

Thm: Suppose that the algorithm is persistently ex- || Parameter
citing and stable (col < ETE < c1I), then 6 — 6. convergence




Convergence Results — Adaptive Control/Online Learning

Al: For all agent preferences 6, there exists incentive
parameters s.t. the agents play the desired strategy.

Thm: Suppose that the algorithm is persistently ex- parameter
citing and stable (col < ETE < cyI), then § — 6. convergence

Thm: Agent strategies and incentive parameters converge )
. d myopic
to the desired values (x; — x¢ and u; — u¢).




Convergence Results — Adaptive Control/Online Learning

A1l: For all agent preferences 6, there exists incentive
parameters s.t. the agents play the desired strategy.
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. d myopic
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Thm: [x? non-degenerate differential Nash (detDw(x/) # 0)
and |6 — 6] < g] = 3 N.E. x* close to x“. Nash




Convergence Results — Adaptive Control/Online Learning

Al: For all agent preferences 6, there exists incentive
parameters s.t. the agents play the desired strategy.

convergence

[Thm: Suppose that the algorithm is persistently ex- ]}parameter

citing and stable (¢l < ETE < ¢1l), then § — 6.

\

(Thm: Agent strategies and incentive parameters converge
to the desired values (x; — x¢ and u; — u¢).

. J

(Thm: [x! non-degenerate differential Nash (detDw(x?) ;AO)‘
and |6 — 6] < g] = 3 N.E. x* close to x“.

J

(Thm: If x* is stable (Dw(x*) > 0), then users will converge ]

to x* under tatonnement (gradient play).

}myopic
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> Nash




Convergence Results — Adaptive Control/Online Learning

Al: For all agent preferences 6, there exists incentive
parameters s.t. the agents play the desired strategy.

convergence

Thm: Suppose that the algorithm is persistently ex-
citing and stable (col < ETE < c1I), then 6 — 6.

] parameter

(Thm: Agent strategies and incentive parameters converge ] .
to the desired values (x; — x4 and u; — u?). ) myopie
(Thm: [x¢ non-degenerate differential Nash (detDw(x/) # 0)‘ ’

and |0 —0|| < g] = 3 N.E. x* close to x“.

b 2 ¢ Nash
Thm: If x* is stable (Dw(x*) > 0), then users will converge

to x* under tatonnement (gradient play). )

/

[Noise: Under classical assumptions, convergence with noise!]

L. Ratliff, Thesis, UC Berkeley, 2015; L. Ratliff, et al., IEEE TAC, 2015; L. Ratliff, et al., SICON, 2015.



Strategic Sources
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Robust Utility Learning: Bootstrapping, Boosting, Bagging

1. Use equilibrium conditions for differential Nash equilibria, to construct
a Constrained Generalized Least Squares problem in agent parameters.

[ Y=X0+¢ ][ cov(e]X) =G> 0 ] G is unknown.
We impose structure;

—1/2y _ ~—1/2 —1/2
[G Y=G /"X0+G 8] let's us learn coalitions!

2. Wild bootstrapping and bagging: Generate N pseudo-datasets;
we have little data and we expect bias. fit N weak FGLS estimators

g mEEEmE e mm e m - ———————— .
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F6) = 000+ EIL, w5, &V = 0 + Iy S 0w

|. Konstantakopolous, et al. IEEE CDC 2016; L. Ratliff, et al., Allerton 2014



Mixture of Utilities — Myopic Decision-Making
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|. Konstantakopolous, et al. IEEE CDC 2016; L. Ratliff, et al., Allerton 2014



vix) =X, % Luce-Shepard

|. Konstantakopolous, et al. IEEE CDC 2016; L. Ratliff, et al., Allerton 2014
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Open Data Initiatives and Data Sharing Mechanisms

Many cities are adopting open data policies in which all data
collected by municipal service providers is made available.

.

At the same time, third-party companies are emerging on the
scene to provide services to cities (e.g. platform-as-a-service). In
addition, companies often want to share data with researchers.

Can we generate mechanisms that deconflict open
data policies with intellectual property protection?
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Privacy Guarantees for Data Exchange at Scale

big data platform as a service

3'd—party 2 |
service 2 |

provider X

|

e.g. differential privacy

£,0 \




Old School Regulation




Breakin' the Law, Breakin' the Law,. ..

36

Alleged Sexual Assaults &
Harassments

{ 17 : . 6

Alleged Kidnappings.
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ber France executive
years in prison
UBER ENCOURAGES DRIVERS T0 OPERATE
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Technologically-Aware Regulation and Policies

Regulators
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Infrastructure Evolution

The shared economy will require service providers to evolve in
order to provide improved services that are competitive in the
new marketplace

m Companies emerging that
capitalizing on streaming
data.

Smart Energy
Smart Governance.

© Smart.Planning

Smart Technology
@

m Forcing existing
infrastructure systems to
modify their operational
model in order to survive.

Smart Buildings
Smart Mobility

Not Just Existing Infrastructure: New infrastructure systems are
emerging! (e.g. UAVs+UTM monitoring health of road, water,
power networks)



Towards a Theory of RC + El

Issues Addressed |

m Incentive Design

. . ¢’ Reliability and Security Risk Management
m Disaggregation and Fundamental |V ki _d 9 |
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Thank you for your attention. Questions?

Shankar Sastry
sastry@coe.berkeley.edu
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