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Robust Control
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Residential DR

Distributed Power
UAV networks
Resilient Stormwater Mgmt

Secure Estimation for CPS
Fully decentralized policies
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Designing high confidence systems that can learn

9/6/2017

Evidence-based Assurance Argumentation
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Operation-time 
learning and adaptation 
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Model Checking using Reachability

Reachable Set



Overappromixations as certificates



Learning can reduce conservatism
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Scalability

• Impose practical constraints
– Roads, highways, protocols…

• Approximations
– Bisimulations (Girard, Pappas, Tabuada)

– Linear, piecewise and multi-affine systems (Morari, Borrelli, Krogh, Johansson, Rantzer, 
Belta, Ozay, Darbon, Osher)

– Ellipsoidal and polyhedral sets (Kurzhanski , Varaiya, Stipanovic)

– Polynomial systems, barrier certificates (Parillo, Majumdar, Tedrake, Pappas, 
Papachristodoulou, Julius, Lall, Topcu, Frehse, Le Guernic, Donzé, Girard, Dang, Maler, 
Dreossi, Sankaranarayanan)

– Decoupling disturbances (Chen, Herbert)

• Mathematical structure
– Monotone systems (Sontag, Hafner, Del Vecchio, Arcak, Coogan)

– LTL specifications (Kress-Gazit, Raman, Murray, Wongpiromsarn, Belta)

• Decompositions (Mitchell, Del Vecchio, Chen, Herbert, Grizzle, Ames, Tabuada)

• Machine learning (Lygeros, Djeridane, Niarchos, Seshia, Chen)
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Learning a controller

Sinusoid + Yaw:

• Trained on each component separately

• Asked to fly combination

• Used Cascade FF neural net (ReLU), 2 layers, 3000 units
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 Safety:

 A nominal model with error bounds

 Reachable sets computed to ensure safety in worst case

 Performance:

 Use online learning to update model

 Cost function used to generate control action within the 
safe set

… but stay safe while learning
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The quadrotor first:
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…but the safe controller steps in

Soon, it starts experimenting

After about 1 minute,

it can roughly track the trajectory

[PGSD:  Kolter and Ng, 2009]

drops

20x

Safe Policy Gradient Reinforcement Learning



• Initialize active unsafe set = smallest candidate set

Online Safety Guarantee Validation



• Measure disturbance

• Compute Bayesian posterior on existence of a usable level set

• If posterior is low (weak safety guarantee), update unsafe set

• Update disturbance model

Online Safety Guarantee Validation



Online Safety Guarantee Validation

• Measure disturbance

• Compute Bayesian posterior on existence of a usable level set

• If posterior is low (weak safety guarantee), update unsafe set

• Update disturbance model
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First computed model 

is locally inaccurate

System detects 

inconsistency,

slightly contracts safe set

Tracking resumes after a

better model is computed

Initial Inaccurate Improved

Safe Learning
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 Models of unknown environments

 Scalability and compositional safety

 Safe exploration

 Sample efficiency:  design-time vs operation-time

 Mixed initiative and collaborative learning

 Risk models
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