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Most critical infrastructures are h-CPS

Cyber + Physical + human (decision makers)
How do we model decision processes?
How do we estimate utility functions?

How do we predict system performance,
when it depends on human decision-makers?

Large-scale networks
Disruptions propagate through the system

Multi-stakeholder systems

Optimization algorithms for resource
allocation

Incentives for information- sharing
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Modeling human decision processes

Key challenge in h-CPS is modeling/predicting the
behavior of the human participants

Discrete-choice models
Assuming decision-makers are rational, estimate their
utility functions
Estimate relative weightings of different influencing
factors

Use operational data (i.e., observations of decisions)
to determine maximume-likelihood model of decision 6‘ A
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Discrete-choice models: Utility function

Rich literature in transportation demand analysis (Ben-Akiva & Lerman 1985)

Decision-maker chooses utility-maximizing option (from a set)
Utility function is modeled as a function of the independent variables

plus an error term U, = (Oéz' + Bz 'Xz') 1o

For each observation, assume that the decision-maker chooses the alternative
that maximizes utility, i.e., the choice ¢; such that

J = argmaxU;
i.cieC
Different models arise from assuming different forms of error term
Most widely used class of models assumes that the errors are independent and
identically Gumbel distributed
Logistic Probability Unit, or Logit models

(‘ FORCES
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Discrete-choice models: Structure

Alternatives (error terms) may not necessarily be independent
Ui = (a; + Bi - Xi) + €&

Potential model structures:

&
@ 1§ %“ i; @@@@@

Alternatives within the same nest have correlated error terms
1 1
NL example: VN1 = — 10g Z eumvj; P(Nl’{Nl,NQ}) _ e VN

eVN1 +eVN2
HN1 jicjeq{altl,alt2}

P(alt1|N1) — eMN1Valtl

E elPN1Vj
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Maximum-likelihood estimation

Explanatory variables (X;) of the utility function are determined iteratively

For a given functional form of the utility function, the likelihood function of a
given set of observations (over N time periods, say) is

g(“?ﬁ) :P<(C1 ’CI)ﬂ““ﬂ(CN‘CN)’aaﬁvx)

where ¢, is the choice observed at time n, and C,, is the set of options

Assuming that the observed choices at each time are conditionally independent
given the explanatory variables, we get

Z(a HP ci|Ci)

(@.B) —argrgaxif(a B)

Nonlinear optimization problem (Bierlaire, 2003)

Structure (MNL/NL/CNL) determined by checking statistical significance
(Hausman-McFadden ‘84)

Page 7 \-) EYBER PHYSIOAL SYSTEMS 6/11/14



Results: Newark (EWR) airport case study

Training data: 2011
(&

22R 221

Only consider configurations used >50 times/year
Validation data: 2013
Prediction accuracy: 73% (max possible: 89%)

100% accuracy in distinguishing between use of the 22’s and the 4’s

Currently extending approach to LGA and SFO

Other applications
C FO RCES
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Resource Allocation:
Optimization + Collaborative Decision Making

Centralized optimization generally
assumes homogeneous delay costs Flight Capacity

schedules forecasts
Airport capacity is uncertain, especially [

a few hours ahead of time

Centralized Optimization
(Ground Holding Problem)

Stochastic optimization formulations: nitial ground holds
Static: Single-stage stochastic Integer slot allocations
Program (|P) Private costs
Dynamic: Multi-stage stochastic IP, [Collaboraﬁve Decision Making (CDM)]
differentiates between flights of (Slot exchanges)

Final slot allocations

different durations

Hybrid: Multi-stage stochastic IP, but
does not differentiate between flights
of different durations

¢ FORCES
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Static Ground Holding Problem

Single-stage stochastic IP (Richetta & Odoni 1993)

Ty Ty T3 T
K T—n T ™ s
Minimize )  Cyn() Al +) m(Ca) AR
n=0 t=1 geQ t—1.
t+K M:\;;‘-\--...___‘_ 8 o
subject to Z AS = Ag™, Vit e {1,..,T}
j=t ’ ‘ ‘@ ss3
2 > Z A8+ A% — AP, Vie(l,.,T},qeQ .
=2 H o H S4
Af‘;,A“q eZ+ vt,je€{1,..,T},qeQ
LP relaxation is integer-optimal if ground-holding costs @ss

are marginally non-decreasing (Kotnyek & Richetta 2006)
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* Multi-stage stochastic IP (Mukherjee & Hansen 2007)

1 T T, T T

arry +K T | B T @
Minimize Y 7[Y (D Coumam;Xf)+(Cad_ A7)
qeqQ fEF t=arry =1

arr j+K N N — -

subject to Z X}, =1,YeQ\VfeF ‘

2t 2 ZX AP - AP VEe{1,.,Thee@ g~
th _ X}:zt Va1,q5 € Gﬁl rset of feasible scenarios at time t-dur; [ [ — @ s4
+
X7,€{0,1}, A} €Z*,Vte{1,..,T},VgeQ,VfeF I
|

* In general, LP relaxation solution is not integer-optimal

* @(FT*+T?) integer decision variables
C;:) FORCES
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* Multi-stage stochastic IP (Ramanujam & Balakrishnan CDC 2014, submitted)

1

Ty

T, T3

T

T—n
Minimize Z'zrq (ZC’ ZXH+,,+C ZA )

qeqQ n=>0
t+K

subject to ZX;’,J. =A™ Vie{1,.,T},qeQ

t
an Z X;,t-l- q.t—1 Aqtthe{la aT} qu ‘

_dur

j=t—K set of feasible scenarios at time t-max
1
Xq th?, ’ Vql y g2 € G¢—max_dur

X el vt,je{l,..,T},qeQ
ASeZt,viec{l,.,T},Vq€Q.

* In general, @/(T3)integer decision variables
Cé FORCES
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Properties of the
Hybrid Ground Holding Formulation

Marginally non-decreasing ground-holding costs

LEMMA 1. The hybrid stochastic SAGHP formulation yields an optimal solution with integer
values for all variables X3, (Vg € Q; a,b € {1,..,T'}) if the queue length variables (A;:Vq € Q,t €

{1,..,T'}) are constrained to have integer values, and the ground-holding costs are marginally non-

n+1 Cg,n 2 Cg,n i n—1 Vn)'

decreasing (i.e., C o

g,

l.e.,

[Ramanujam & Balakrishnan CDC 2014, submitted]

(‘ FORCES

OOOOOOOOOOOOOOOOOOOOOO
Page 3 g CIBER.PHYSICAL SYSTEMS 6/11/14



* Marginally non-decreasing ground-holding costs + special scenario
tree structure
LEMMA 2. Given marginally non-decreasing ground-holding cost coefficients Cy 11 — Cypn >

Cyn — Cyn-1, Yn, and a capacity scenario tree forecast with sequentially non-decreasing capacity
scenarios and sole element of uncertainty being time of improvement from lowest capacity state,
the hybrid stochastic SAGHP formulation is guaranteed to have an integral optimum solution if the

queue length variables for scenario T' (i.e., A7, Vt €{1,..,T}) are constrained to be integers.

* i.e., @(T)integer variables instead of &(T3)

[Ramanujam & Balakrishnan CDC 2014, submitted]
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Intra-airline substitution

Minimize Z Z Cf1.f2Xf1,f2

.fleFa fQGFa

subject to: Z Xap=1¥pbe F;
f1€EFa
Y Xpp=1Yf1eF,
fo€Fa

Xf1,f2 = fea.sfl,f,” Vfi,fa€F,
XU lNhibic Fa
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Inter-airline substitution

maximize qu [ Z ZT:B’(T)Y"’r —M dg}

subject to:

q€EQR fEF\cT=1
ETAf+K
Y Xi,=1,Yqe€Q,\VfeF
t=ETAj
AR>) X1+ AR —AGP,Vte{1,.,ThqeQ
fEF

X_t;,lt =X ;?t) Vql yq2 € GETA f—max_dur)

i

di=> tXI,—k,VgeQ,
t=1

T

) tX3,<ar?,VgeQ,feF\c
t=1 .

A ™ NgeOite .. T)
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Comparison of
Ground Holding Problem Formulations

Static Hybrld Dynamic

Pre-CDM delay cost High (Worst) | Medi Low (Best)
Benefit from CDM High (Best) Medium | Low (Worst)
Equity High (Best) Mediu Low (Worst)
Tractability High (Best) Medit Low (Worst)
Ease of implementation High (Best) Me: ll Low (Worst)

[Ramanujam & Balakrishnan CDC 2014, submitted]
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Summary

Modeling human-driven decision processes is difficult, since
utility functions are often not formally codified

Discrete-choice models present a way to determine utility functions
as well as model structure

Data-driven models (descriptive, rather than prescriptive)
Maximume-likelihood estimation

Multi-stakeholder optimization is a critical challenge in h-CPS

Different optimization formulations present tradeoffs in terms of
Computational tractability
System-optimal benefits
Incentives for participation
Incentives for information-sharin
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