

Scheduling Resource-Bounded Monitoring Devices

Aron Laszka University of California, Berkeley

joint work with

Waseem Abbas, Yevgeniy Vorobeychik, and Xenofon Koutsoukos Vanderbilt University

Monitoring Cyber-Physical Systems

- Being able to detect faults and failures before suffering substantial or irreversible physical damage is fundamental to the resilient operation of cyber-physical systems
- In many spatially-distributed cyber-physical systems, faults and failures may only be detected by monitoring devices deployed over the system

Resource-Bounded Monitoring Devices

- * Using **battery-powered** devices can reduce deployment costs
 - * in some cases, battery power is the only feasible option
- ∗ Battery-powered devices have limited lifetime
 ↔ cyber-physical systems may require extended lifetime

* Sleep scheduling

- * only a subset of monitoring devices are active at any given time
- * "sleeping" devices conserve battery power
- * however, some events may not be detected
- * Finding an **optimal schedule** is challenging: tradeoff between <u>system lifetime</u> and <u>detection performance</u>

Contributions

- 1. Monitoring networks
- 2. Simultaneous placement and scheduling
- 3. Minimizing detection delay

1. Monitoring Networks

- Many spatially-distributed cyber-physical systems can be naturally modeled as **networks**
 - water, wastewater, gas, and oil pipelines
 - * electric networks
- Physical topology and device capabilities determine the set of failures a monitoring device can detect
- → Optimal sleep schedule must take the physical topology of the system into account

Wastewater pipeline network of Norfolk, VA

Example Application: Water-Distributions Networks

* Leakages in water-distribution networks can cause

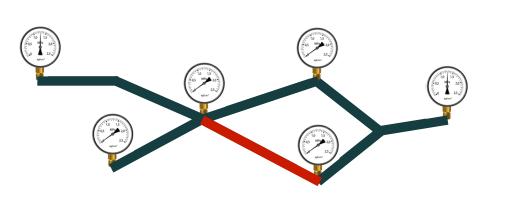
- significant economic losses
- extra costs for final consumers
- * third-party damage and health risks

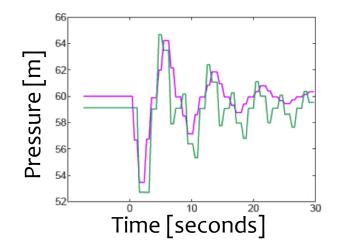
"6 billion gallons of water per day may be wasted in the U.S." (Center for Neighborhood Technology, 2013)

"worldwide cost of physical losses is over \$8 billion" (World Bank, 2006)

Physical Leakage Detection Model

 Pressure sensors can detect nearby events, such as leakages and pipe bursts
 Measurements of Nearest Sensors



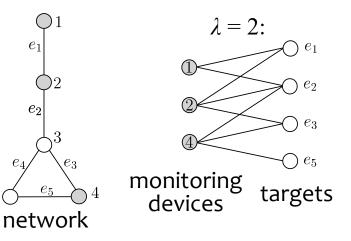


- Continuous monitoring through sensors can significantly reduce physical damage and financial losses
- * However, battery-powered sensors have limited lifetime

Network and Monitoring Model

- * Network: G(V, E)
 - * set of monitoring devices: $X \subseteq V$
 - * set of targets: $Y \subseteq (V \cup E)$
- Distance-based monitoring model
 - * distance d(x, y) =
 - * between nodes x and y: number of hops between x and y
 - * between node x and edge y = (u, v): max {d(x, u), d(x, v)}
 - * range of monitoring devices = λ
 - * device u can monitor all nodes and edges within λ distance:

 $\{v \subseteq V : d(u, v) \le \lambda\} \cup \{e \subseteq E : d(u, e) \le \lambda\}$

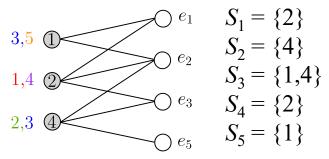


Schedules and Detection Performance

- Limited battery power
 - network lifetime = k time intervals
 - * active monitoring time = $\sigma < k$
- * Schedule: (*S*₁, ..., *S*_{*k*})
 - * every $S_i \subseteq X$
 - * for every monitoring device s: $|\{S_i \mid s \in S_i\}| \le \sigma$
- * Average detection performance:

$$\mathcal{D} = \frac{1}{k} \sum_{i=1}^{k} \frac{m_i}{|Y|}$$

Optimal schedule for k = 5 and $\sigma = 2$:



Detection performance:

$$m_1 = 3$$

$$m_2 = 3$$

$$m_3 = 4 \longrightarrow \mathcal{D} = 0.75$$

$$m_4 = 3$$

$$m_5 = 2$$

* where m_i is the number of monitored targets in time interval i

Computational Complexity

Number of feasible schedules

* example: 10 monitoring devices, 30 time intervals, each device may be active in 10 intervals \rightarrow 847,660,528¹⁰ \approx 10⁸⁹ > number of atoms in the observable universe

Theorem: Given an instance of the scheduling problem, finding a feasible schedule that maximizes the average detection performance is an **APX-hard** problem.

 \rightarrow no polynomial-time approximation scheme

* Proof: reduction from the Maximum Cut Problem

Special Case: Continuous Complete Monitoring

- * Continuous complete monitoring: <u>detection performance $\mathcal{D} = 1$ </u> \rightarrow objective: <u>maximizing lifetime k</u>
- * Dominating-set based solution:
 - * every set of active monitoring devices S_i is a dominating set

Theorem: Let *G* be a graph such that

- *G* has a minimum degree of at least two,
- no subgraph of G is isomorphic to $K_{1,6}$, and

Then, there exists a schedule for any $k < \frac{5}{2}\sigma$ such that $\mathcal{D} = 1$.

* Proximity graphs are always $K_{1,6}$ -free

Potential Game Formulation

- * Game $\Gamma(\mathcal{P}, \mathcal{A}, \mathcal{U})$:
 - * $\mathcal{P} = \{1, 2, ..., n\}$: set of players
 - * $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \times \dots \times \mathcal{A}_n$: actions spaces
 - * $\mathcal{U} = \{\mathcal{U}_1, \mathcal{U}_2, ..., \mathcal{U}_n\}$: utility functions
- * <u>Potential game</u>: $\Gamma(\mathcal{P}, \mathcal{A}, \mathcal{U})$ is a potential game if there exists a potential function $\varphi: \mathcal{A} \to \mathbb{R}$ such that

$$\mathcal{U}_x(a_x, a_{-x}) - \mathcal{U}_x(a'_x, a_{-x}) = \phi(a_x, a_{-x}) - \phi(a'_x, a_{-x})$$

 Potential games are extensively used for distributed control optimization problems

Scheduling Problem as a Potential Game

* Scheduling game $\Gamma(\mathcal{P}, \mathcal{A}, \mathcal{U})$:

- * players $\mathcal{P} = X$ monitoring devices
- * actions space $\mathcal{A}_i = \sigma$ -subsets of $\{1, 2, ..., k\}$
- * utility functions:

$$U_x(a_x, a_{-x}) \triangleq \sum_{j=1}^n a_{xj} \left| N(x) \setminus \bigcup_{z \in S_j \setminus \{x\}} N(z) \right|$$

where N(x) is the set of targets in range of device x, and a_{xj} is 1 if device x is active in time interval j and 0 otherwise

L

* Potential function: $\phi(a) \triangleq \sum_{j=1}^{k} \left| \bigcup_{x \in S_j} N(x) \right|$

Theorem: The scheduling game is a potential game.

Binary Log-Linear Learning

* Algorithm

- start with random actions
- in each iteration, a player and an action is chosen at random
- action is updated with some probability, which depends on the resulting utilities

Algorithm 2 Binary Log-Linear Learning

- 1: Initialization: Pick a small $\epsilon \in \mathbb{R}_+$, an $a \in \mathcal{A}$, and total iterations.
- 2: While i < iterations do
- Pick a random node $x \in \mathcal{X}$, and a random $a'_x \in \mathcal{A}_x$. Compute $P_{\epsilon} = \frac{\epsilon^{U_x(a'_x, a_{-x}(t))}}{\epsilon^{U_x(a'_x, a_{-x}(t))} + \epsilon^{U_x(a_x, a_{-x}(t))}}$. 3:
- 4:

5: Set
$$a_x \leftarrow a'_x$$
 with probability P_{ϵ} .

6:
$$i \leftarrow i +$$

- 7: End While
- * Only the joint action profiles that maximize the potential function form stochastically stable equilibria \rightarrow algorithm will converge to a global optimum
- Polynomial running time

Simple Heuristic: Greedy Algorithm

* Scheduling problem resembles set covering since we have to "cover" targets with monitoring devices in every time interval

Algorithm 1 Greedy Heuristic

3: While $|\mathcal{X}'| \neq \emptyset$ do

End If

1: **Given:** $\sigma, \mathcal{K} = \{1, 2, \cdots, k\}$

 $f(x) \leftarrow f(x) \cup \{\ell\}$

 $\mathcal{X}' \leftarrow \mathcal{X}' \setminus \{x\}$

If $|f(x)| = \sigma$ do

2: Initialization: $\mathcal{X}' \leftarrow \mathcal{X}, f(x) \leftarrow \emptyset, \forall x \in \mathcal{X}$

 $(x, \ell) \leftarrow \operatorname*{argmax}_{x \in \mathcal{X}', \ell \in \mathcal{K}} \sum_{y \in \mathcal{Y}} |f(y)|$

* Algorithm

- * start with an empty schedule $(S_1 = S_2 = ... = S_k = \emptyset)$
- in each iteration, activate an additional monitoring device x in interval l (i.e., add x to S_l)
- * choose (x, l) such that the increase in detection performance is maximum
- * Polynomial running time

4:

5:

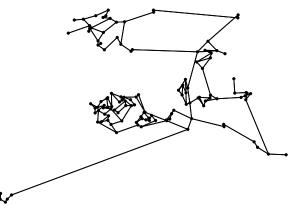
6:

7:

8:

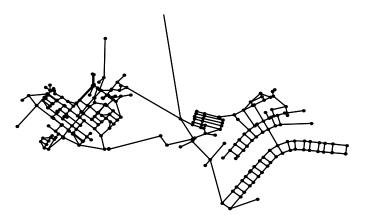
Numerical Evaluation – Water Networks

* Real-world water-distribution networks



Water network 1:

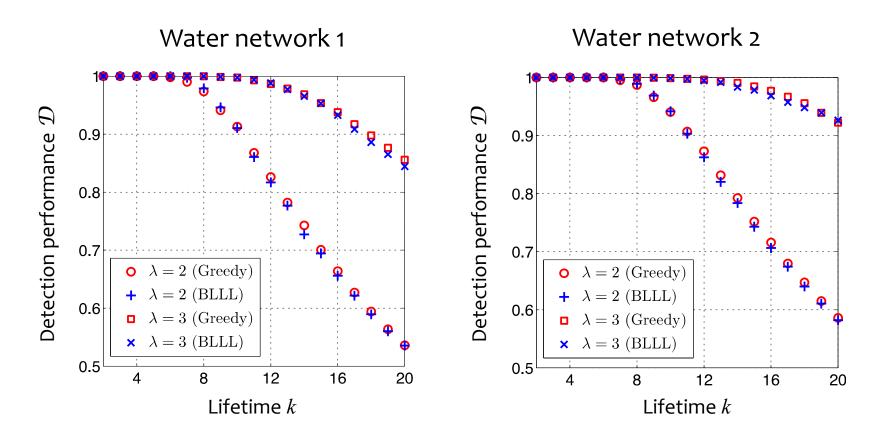
- 126 nodes, 168 links, one reservoir, one pump, and two storage tanks
- extensively studied in the sensor placement literature



Water network 2:

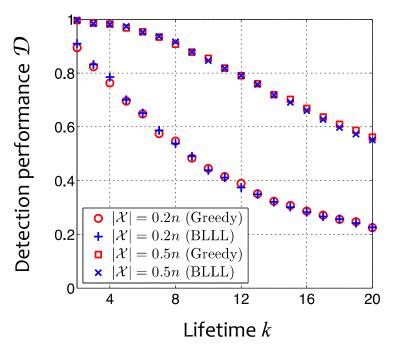
- 270 nodes, 366 links, three tanks, and five pumps
- grid system in Kentucky
- * For both networks, we let X = V, Y = E, and $\sigma = 2$

Numerical Results – Water Networks



Numerical Results – Geometric Graphs

- * Random geometric graphs
 - * 100 nodes are distributed uniformly at random in a unit square
 - nodes are connected if their
 Euclidean distance is at most 0.2
 - certain fraction (either 20% or 50%) of the nodes are selected to be monitoring devices
- * We let X = Y = V and $\sigma = 2$



2. Simultaneous Placement and Scheduling

- * So far, we assumed that the set of monitoring devices X is given
- * Placement problem:

where to place monitoring devices in a network?

- * Simple "solution":
 - 1. find a placement maximizing some "target coverage" metric
 - 2. find a schedule (e.g., greedy algorithm or BLLL)
- * Simultaneous placement and scheduling
 - * find a placement and schedule simultaneously
 - * advantage: placement can take the feasible schedules into account \rightarrow higher detection performance or longer lifetime

Problem Formulation

* Input

- * network G(V, E), range λ , lifetime k, power σ
- * number of monitoring devices: *n*
- * feasible monitoring device **locations**: $S \subseteq V$
- * Solution: placement and schedule $(X, S_1, ..., S_k)$, where $X \subseteq S$, |X| = n, and every $S_i \subseteq X$
- * Objective: detection performance ${\mathcal D}$
- Complexity:
 at least as hard as the scheduling problem

Adapting Binary Log-Linear Learning

- * Action space A_i of scheduling game Γ : σ -subsets of $\{1, 2, ..., k\}$
- * Scheduling and placement game $\Gamma^*(\mathcal{P}, \mathcal{A}^*, \mathcal{U})$:
 - * we extend each action space with a <u>position</u>: $\mathcal{A}_i^* = \mathcal{A}_i \times S$
 - everything else is the same as in the scheduling game
- Scheduling and placement game is a potential game
 - → convergence properties still hold

Algorithm 3 Simultaneous Placement and Scheduling

- 1: Initialization: Pick a small $\epsilon \in \mathbb{R}_+$ and the number of iterations. Select randomly a subset of nodes $\mathcal{X} \subseteq \mathcal{S}$, and assign labels to nodes in \mathcal{X} , i.e, select $a \in \mathcal{A}$.
- 2: While $i \leq$ iterations do
- 3: Randomly select a node $x \in \mathcal{X}$.
- 4: Randomly select a node $s \in (\mathcal{S} \setminus \mathcal{X}) \cup \{x\}$, and $a_s \in \mathcal{A}_s$.

5: Compute
$$P_{\epsilon} = \frac{\epsilon^{U_s(a_s,a_{-x})}}{\epsilon^{U_s(a_s,a_{-x})} + \epsilon^{U_x(a_x,a_{-x})}}$$
.

6: With probability P_{ϵ} , set $\mathcal{X} \leftarrow (\mathcal{X} \setminus \{x\}) \cup \{s\}$, and select a_s for node s.

7:
$$i \leftarrow i + i$$

8: End While

Numerical Evaluation

* Baseline: individual optimization

- 1. select a set of monitoring devices $X \subseteq S$ maximizing the number of targets that are monitored by at least one device
- 2. find a schedule using Algorithm 2 (BLLL)
- * Networks
 - * Water network 1:
 - place monitoring devices at 25 nodes (out of 126 total)
 - Random geometric graph:
 place monitoring devices at 10 nodes (out of 50 total)

Numerical Results



3. Minimizing Detection Delay

- * Maximizing detection performance ${\mathcal D}$
 - = maximizing the **number of time intervals** in which each target is monitored
 - * without considering which time intervals
- * Detection performance does not guarantee timely detection
 - * example: if a target could be monitored in 5 out of 10 intervals, $\{1, 2, 3, 4, 5\} \rightarrow \mathcal{D} = 0.5$, and average time until detection is 1.5 $\{1, 3, 5, 7, 9\} \rightarrow \mathcal{D} = 0.5$, but average time until detection is 0.5
- * When losses depend on the time between a failure and its mitigation, we need to minimize the average <u>time until detection</u>

Problem Formulation

* Detection delay T:

expected number of time intervals until a failure at a uniformly randomly chosen target in a uniformly randomly chosen time interval is detected

$$\mathcal{T} = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{|Y|} \sum_{y \in Y} \left[\min \left\{ j \mid j \ge i \land y \in \bigcup_{x \in S_{(j \mod k)}} N(x) \right\} - i \right]$$

* Computational complexity

* minimizing detection delay is an **APX-hard** problem

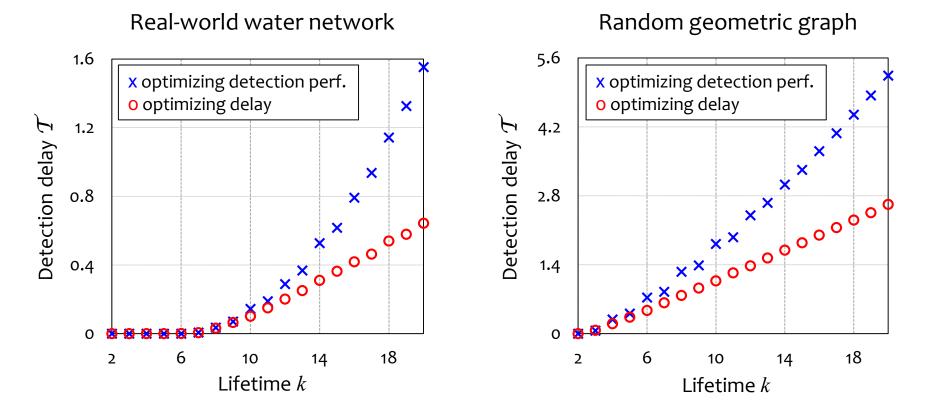
* using the same argument as for maximizing detection performance

Numerical Evaluation

* Simulated annealing

- * start with a random schedule
- * in each iteration, choose a random monitoring device and a new σ -set of time intervals, and switch to the new assignment with probability depending on the difference in detection delay \mathcal{T}
- * Baseline solution: maximizing detection performance \mathcal{D} (using BLLL or greedy)
- * Networks:
 - * Water network 1 with X = V, Y = E, $\sigma = 2$, and $\lambda = 2$
 - * Random geometric graph with X = Y = V, $\sigma = 2$, and $\lambda = 1$

Numerical Results



Summary

- * Sleep scheduling enables prolonging the lifetime of batterypowered monitoring devices
- When detection depends on the physical topology of a cyberphysical system, optimal sleep schedules must take the physical topology into account
- * **Simultaneous placement and scheduling** of monitoring devices may lead to a substantial increase in detection performance
- * For certain applications, **minimizing detection delay** can lead to significantly better schedules

Thank you for your attention! Questions?

Numerical Results – Water Networks

