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 Being able to detect faults and failures before suffering 
substantial or irreversible physical damage is fundamental to the 
resilient operation of cyber-physical systems

 In many spatially-distributed cyber-physical systems, faults and 
failures may only be detected by monitoring devices deployed 
over the system

Monitoring Cyber-Physical Systems

3/1/2017
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 Using battery-powered devices can reduce deployment costs

 in some cases, battery power is the only feasible option

 Battery-powered devices have limited lifetime
⟷ cyber-physical systems may require extended lifetime

 Sleep scheduling

 only a subset of monitoring devices are active at any given time

 “sleeping” devices conserve battery power

 however, some events may not be detected

 Finding an optimal schedule is challenging:
tradeoff between system lifetime and detection performance

Resource-Bounded Monitoring Devices

3/1/2017
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1. Monitoring networks

2. Simultaneous placement and scheduling

3. Minimizing detection delay

Contributions

3/1/2017
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 Many spatially-distributed cyber-physical systems can be 
naturally modeled as networks
 water, wastewater, gas, and

oil pipelines

 electric networks

 Physical topology and device
capabilities determine the 
set of failures a monitoring 
device can detect

→ Optimal sleep schedule must
take the physical topology of
the system into account

1. Monitoring Networks

3/1/2017

Wastewater pipeline network 
of Norfolk, VA
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 Leakages in water-distribution networks can cause
 significant economic losses
 extra costs for final consumers
 third-party damage and health risks
 …

Example Application: 
Water-Distributions Networks

3/1/2017

“6 billion gallons of water per day may be wasted in the U.S.”
(Center for Neighborhood Technology, 2013)

“worldwide cost of physical losses is over $8 
billion” (World Bank, 2006)
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 Pressure sensors can detect nearby events, such as leakages 
and pipe bursts

Physical Leakage Detection Model

3/1/2017

 Continuous monitoring through sensors can significantly reduce 
physical damage and financial losses

 However, battery-powered sensors have limited lifetime
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 Network: G(V, E)

 set of monitoring devices: X ⊆ V

 set of targets: Y ⊆ (V ∪ E)

 Distance-based monitoring model
 distance d(x, y) =

 between nodes x and y:
number of hops between x and y

 between node x and edge y = (u, v):
max{d(x, u), d(x, v)}

 range of monitoring devices = λ

 device u can monitor all nodes and edges within λ distance:

Network and Monitoring Model

3/1/2017

network

monitoring
devices targets

λ = 2:
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 Limited battery power
 network lifetime = k time intervals

 active monitoring time = σ < k

 Schedule: (S1, ..., Sk)

 every Si ⊆ X

 for every monitoring device s: 

{⃒Si ⃒ s ∈ Si }⃒≤ σ

 Average detection performance:

 where mi is the number of monitored targets in time interval i

Schedules and Detection Performance

3/1/2017

Optimal schedule for k = 5 and σ = 2:

S1 = {2}

S2 = {4}

S3 = {1,4}

S4 = {2}

S5 = {1}

Detection performance:
m1 = 3

m2 = 3

m3 = 4

m4 = 3

m5 = 2

→ D = 0.75
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 Number of feasible schedules

 example: 10 monitoring devices, 30 time intervals, each device may 
be active in 10 intervals → 847,660,52810 ≈ 1089 > number of atoms 
in the observable universe

Computational Complexity

3/1/2017

Theorem: Given an instance of the scheduling problem, 
finding a feasible schedule that maximizes the average 
detection performance is an APX-hard problem.

→ no polynomial-time approximation scheme

 Proof: reduction from the Maximum Cut Problem
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 Continuous complete monitoring: detection performance D = 1
→ objective: maximizing lifetime k

 Dominating-set based solution:
 every set of active monitoring devices Si is a dominating set

Special Case: Continuous Complete Monitoring

3/1/2017

Theorem: Let G be a graph such that
• G has a minimum degree of at least two,
• no subgraph of G is isomorphic to K1,6, and
• G .
Then, there exists a schedule for any k <    σ such that D = 1.   

 Proximity graphs are always K1,6-free
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 Game Γ(P , A, U):

 P = {1, 2, ..., n}: set of players

 A = A1 x A2 x ... x An: actions spaces

 U = {U1, U2, ..., Un}: utility functions

 Potential game: Γ(P , A, U) is a potential game if there exists a 
potential function φ: A → R such that

 Potential games are extensively used for distributed control 
optimization problems

Potential Game Formulation

3/1/2017
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 Scheduling game Γ(P , A, U):

 players P = X monitoring devices

 actions space Ai = σ-subsets of {1, 2, ..., k}

 utility functions:

where N(x) is the set of targets in range of device x, and axj is 1 if device x is 
active in time interval j and 0 otherwise

 Potential function:

Scheduling Problem as a Potential Game

3/1/2017

Theorem: The scheduling game is a potential game.
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 Algorithm

 start with random actions

 in each iteration, a player and 
an action is chosen at random

 action is updated with some 
probability, which depends 
on the resulting utilities

 Only the joint action profiles that maximize the potential 
function form stochastically stable equilibria
→ algorithm will converge to a global optimum

 Polynomial running time

Binary Log-Linear Learning

3/1/2017
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 Scheduling problem resembles set covering since we have to 
“cover” targets with monitoring devices in every time interval

 Algorithm

 start with an empty schedule
(S1 = S2 = … = Sk = Ø)

 in each iteration, activate an 
additional monitoring device x
in interval l (i.e., add x to Sl)

 choose (x, l) such that the
increase in detection performance is maximum

 Polynomial running time

Simple Heuristic: Greedy Algorithm

3/1/2017
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 Real-world water-distribution networks

Numerical Evaluation – Water Networks

3/1/2017

Water network 1:
• 126 nodes, 168 links, one reservoir, 

one pump, and two storage tanks
• extensively studied in the sensor 

placement literature

Water network 2:
• 270 nodes, 366 links, three tanks, 

and five pumps
• grid system in Kentucky

 For both networks, we let X = V, Y = E, and σ = 2
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Numerical Results – Water Networks

3/1/2017

Water network 1 Water network 2
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 Random geometric graphs

 100 nodes are distributed uniformly 
at random in a unit square

 nodes are connected if their 
Euclidean distance is at most 0.2

 certain fraction (either 20% or 50%) 
of the nodes are selected to be 
monitoring devices

 We let X = Y = V and σ = 2

Numerical Results – Geometric Graphs

3/1/2017
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 So far, we assumed that the set of monitoring devices X is given 

 Placement problem:

where to place monitoring devices in a network? 

 Simple “solution”:

1. find a placement maximizing some “target coverage” metric

2. find a schedule (e.g., greedy algorithm or BLLL)

 Simultaneous placement and scheduling

 find a placement and schedule simultaneously

 advantage: placement can take the feasible schedules into account
→ higher detection performance or longer lifetime

2. Simultaneous Placement and Scheduling

3/1/2017
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 Input

 network G(V, E), range λ, lifetime k, power σ

 number of monitoring devices: n

 feasible monitoring device locations: S ⊆ V

 Solution: placement and schedule (X, S1, ..., Sk), 
where X ⊆ S, |X| = n, and every Si ⊆ X

 Objective: detection performance D

 Complexity:
at least as hard as the scheduling problem

Problem Formulation

3/1/2017
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 Action space Ai of scheduling game Γ: σ-subsets of {1, 2, ..., k}

 Scheduling and placement game Γ*(P , A*, U):

 we extend each action space
with a position: Ai

* = Ai x S

 everything else is the same
as in the scheduling game

 Scheduling and placement
game is a potential game
→ convergence properties 

still hold

Adapting Binary Log-Linear Learning

3/1/2017
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 Baseline: individual optimization

1. select a set of monitoring devices X ⊆ S maximizing the number of 
targets that are monitored by at least one device

2. find a schedule using Algorithm 2 (BLLL)

 Networks

 Water network 1: 
place monitoring devices at 25 nodes (out of 126 total)

 Random geometric graph: 
place monitoring devices at 10 nodes (out of 50 total)

Numerical Evaluation

3/1/2017
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Numerical Results

3/1/2017

Real-world water network Random geometric graph
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 Maximizing detection performance D
= maximizing the number of time intervals in which each target

is monitored

 without considering which time intervals 

 Detection performance does not guarantee timely detection

 example: if a target could be monitored in 5 out of 10 intervals,
{1, 2, 3, 4, 5} →D = 0.5, and average time until detection is 1.5

{1, 3, 5, 7, 9} →D = 0.5, but average time until detection is 0.5

 When losses depend on the time between a failure and its 
mitigation, we need to minimize the average time until detection

3. Minimizing Detection Delay

3/1/2017
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 Detection delay T:
expected number of time intervals until a failure at a uniformly 
randomly chosen target in a uniformly randomly chosen time 
interval is detected

 Computational complexity

 minimizing detection delay is an APX-hard problem

 using the same argument as for maximizing detection performance

Problem Formulation

3/1/2017



Page 26

 Simulated annealing

 start with a random schedule 

 in each iteration, choose a random monitoring device and a new 
σ-set of time intervals, and switch to the new assignment with 
probability depending on the difference in detection delay T

 Baseline solution:
maximizing detection performance D (using BLLL or greedy)

 Networks: 

 Water network 1 with X = V, Y = E, σ = 2, and λ = 2

 Random geometric graph with X = Y = V, σ = 2, and λ = 1

Numerical Evaluation

3/1/2017
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Numerical Results

3/1/2017
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 Sleep scheduling enables prolonging the lifetime of battery-
powered monitoring devices

 When detection depends on the physical topology of a cyber-
physical system, optimal sleep schedules must take the physical 
topology into account

 Simultaneous placement and scheduling of monitoring devices 
may lead to a substantial increase in detection performance

 For certain applications, minimizing detection delay can lead to 
significantly better schedules

Summary

3/1/2017



Thank you for your attention!

Questions?
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Numerical Results – Water Networks

3/1/2017

Water network 1Water network 2
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