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 Being able to detect faults and failures before suffering 
substantial or irreversible physical damage is fundamental to the 
resilient operation of cyber-physical systems

 In many spatially-distributed cyber-physical systems, faults and 
failures may only be detected by monitoring devices deployed 
over the system

Monitoring Cyber-Physical Systems

3/1/2017
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 Using battery-powered devices can reduce deployment costs

 in some cases, battery power is the only feasible option

 Battery-powered devices have limited lifetime
⟷ cyber-physical systems may require extended lifetime

 Sleep scheduling

 only a subset of monitoring devices are active at any given time

 “sleeping” devices conserve battery power

 however, some events may not be detected

 Finding an optimal schedule is challenging:
tradeoff between system lifetime and detection performance

Resource-Bounded Monitoring Devices

3/1/2017
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1. Monitoring networks

2. Simultaneous placement and scheduling

3. Minimizing detection delay

Contributions
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 Many spatially-distributed cyber-physical systems can be 
naturally modeled as networks
 water, wastewater, gas, and

oil pipelines

 electric networks

 Physical topology and device
capabilities determine the 
set of failures a monitoring 
device can detect

→ Optimal sleep schedule must
take the physical topology of
the system into account

1. Monitoring Networks

3/1/2017

Wastewater pipeline network 
of Norfolk, VA
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 Leakages in water-distribution networks can cause
 significant economic losses
 extra costs for final consumers
 third-party damage and health risks
 …

Example Application: 
Water-Distributions Networks

3/1/2017

“6 billion gallons of water per day may be wasted in the U.S.”
(Center for Neighborhood Technology, 2013)

“worldwide cost of physical losses is over $8 
billion” (World Bank, 2006)
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 Pressure sensors can detect nearby events, such as leakages 
and pipe bursts

Physical Leakage Detection Model

3/1/2017

 Continuous monitoring through sensors can significantly reduce 
physical damage and financial losses

 However, battery-powered sensors have limited lifetime
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 Network: G(V, E)

 set of monitoring devices: X ⊆ V

 set of targets: Y ⊆ (V ∪ E)

 Distance-based monitoring model
 distance d(x, y) =

 between nodes x and y:
number of hops between x and y

 between node x and edge y = (u, v):
max{d(x, u), d(x, v)}

 range of monitoring devices = λ

 device u can monitor all nodes and edges within λ distance:

Network and Monitoring Model

3/1/2017

network

monitoring
devices targets

λ = 2:
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 Limited battery power
 network lifetime = k time intervals

 active monitoring time = σ < k

 Schedule: (S1, ..., Sk)

 every Si ⊆ X

 for every monitoring device s: 

{⃒Si ⃒ s ∈ Si }⃒≤ σ

 Average detection performance:

 where mi is the number of monitored targets in time interval i

Schedules and Detection Performance

3/1/2017

Optimal schedule for k = 5 and σ = 2:

S1 = {2}

S2 = {4}

S3 = {1,4}

S4 = {2}

S5 = {1}

Detection performance:
m1 = 3

m2 = 3

m3 = 4

m4 = 3

m5 = 2

→ D = 0.75
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 Number of feasible schedules

 example: 10 monitoring devices, 30 time intervals, each device may 
be active in 10 intervals → 847,660,52810 ≈ 1089 > number of atoms 
in the observable universe

Computational Complexity

3/1/2017

Theorem: Given an instance of the scheduling problem, 
finding a feasible schedule that maximizes the average 
detection performance is an APX-hard problem.

→ no polynomial-time approximation scheme

 Proof: reduction from the Maximum Cut Problem
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 Continuous complete monitoring: detection performance D = 1
→ objective: maximizing lifetime k

 Dominating-set based solution:
 every set of active monitoring devices Si is a dominating set

Special Case: Continuous Complete Monitoring

3/1/2017

Theorem: Let G be a graph such that
• G has a minimum degree of at least two,
• no subgraph of G is isomorphic to K1,6, and
• G .
Then, there exists a schedule for any k <    σ such that D = 1.   

 Proximity graphs are always K1,6-free
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 Game Γ(P , A, U):

 P = {1, 2, ..., n}: set of players

 A = A1 x A2 x ... x An: actions spaces

 U = {U1, U2, ..., Un}: utility functions

 Potential game: Γ(P , A, U) is a potential game if there exists a 
potential function φ: A → R such that

 Potential games are extensively used for distributed control 
optimization problems

Potential Game Formulation

3/1/2017
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 Scheduling game Γ(P , A, U):

 players P = X monitoring devices

 actions space Ai = σ-subsets of {1, 2, ..., k}

 utility functions:

where N(x) is the set of targets in range of device x, and axj is 1 if device x is 
active in time interval j and 0 otherwise

 Potential function:

Scheduling Problem as a Potential Game

3/1/2017

Theorem: The scheduling game is a potential game.
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 Algorithm

 start with random actions

 in each iteration, a player and 
an action is chosen at random

 action is updated with some 
probability, which depends 
on the resulting utilities

 Only the joint action profiles that maximize the potential 
function form stochastically stable equilibria
→ algorithm will converge to a global optimum

 Polynomial running time

Binary Log-Linear Learning

3/1/2017
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 Scheduling problem resembles set covering since we have to 
“cover” targets with monitoring devices in every time interval

 Algorithm

 start with an empty schedule
(S1 = S2 = … = Sk = Ø)

 in each iteration, activate an 
additional monitoring device x
in interval l (i.e., add x to Sl)

 choose (x, l) such that the
increase in detection performance is maximum

 Polynomial running time

Simple Heuristic: Greedy Algorithm

3/1/2017
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 Real-world water-distribution networks

Numerical Evaluation – Water Networks

3/1/2017

Water network 1:
• 126 nodes, 168 links, one reservoir, 

one pump, and two storage tanks
• extensively studied in the sensor 

placement literature

Water network 2:
• 270 nodes, 366 links, three tanks, 

and five pumps
• grid system in Kentucky

 For both networks, we let X = V, Y = E, and σ = 2
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Numerical Results – Water Networks

3/1/2017

Water network 1 Water network 2
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 Random geometric graphs

 100 nodes are distributed uniformly 
at random in a unit square

 nodes are connected if their 
Euclidean distance is at most 0.2

 certain fraction (either 20% or 50%) 
of the nodes are selected to be 
monitoring devices

 We let X = Y = V and σ = 2

Numerical Results – Geometric Graphs

3/1/2017
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 So far, we assumed that the set of monitoring devices X is given 

 Placement problem:

where to place monitoring devices in a network? 

 Simple “solution”:

1. find a placement maximizing some “target coverage” metric

2. find a schedule (e.g., greedy algorithm or BLLL)

 Simultaneous placement and scheduling

 find a placement and schedule simultaneously

 advantage: placement can take the feasible schedules into account
→ higher detection performance or longer lifetime

2. Simultaneous Placement and Scheduling

3/1/2017
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 Input

 network G(V, E), range λ, lifetime k, power σ

 number of monitoring devices: n

 feasible monitoring device locations: S ⊆ V

 Solution: placement and schedule (X, S1, ..., Sk), 
where X ⊆ S, |X| = n, and every Si ⊆ X

 Objective: detection performance D

 Complexity:
at least as hard as the scheduling problem

Problem Formulation

3/1/2017
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 Action space Ai of scheduling game Γ: σ-subsets of {1, 2, ..., k}

 Scheduling and placement game Γ*(P , A*, U):

 we extend each action space
with a position: Ai

* = Ai x S

 everything else is the same
as in the scheduling game

 Scheduling and placement
game is a potential game
→ convergence properties 

still hold

Adapting Binary Log-Linear Learning

3/1/2017
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 Baseline: individual optimization

1. select a set of monitoring devices X ⊆ S maximizing the number of 
targets that are monitored by at least one device

2. find a schedule using Algorithm 2 (BLLL)

 Networks

 Water network 1: 
place monitoring devices at 25 nodes (out of 126 total)

 Random geometric graph: 
place monitoring devices at 10 nodes (out of 50 total)

Numerical Evaluation

3/1/2017
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Numerical Results

3/1/2017

Real-world water network Random geometric graph
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 Maximizing detection performance D
= maximizing the number of time intervals in which each target

is monitored

 without considering which time intervals 

 Detection performance does not guarantee timely detection

 example: if a target could be monitored in 5 out of 10 intervals,
{1, 2, 3, 4, 5} →D = 0.5, and average time until detection is 1.5

{1, 3, 5, 7, 9} →D = 0.5, but average time until detection is 0.5

 When losses depend on the time between a failure and its 
mitigation, we need to minimize the average time until detection

3. Minimizing Detection Delay

3/1/2017
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 Detection delay T:
expected number of time intervals until a failure at a uniformly 
randomly chosen target in a uniformly randomly chosen time 
interval is detected

 Computational complexity

 minimizing detection delay is an APX-hard problem

 using the same argument as for maximizing detection performance

Problem Formulation

3/1/2017
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 Simulated annealing

 start with a random schedule 

 in each iteration, choose a random monitoring device and a new 
σ-set of time intervals, and switch to the new assignment with 
probability depending on the difference in detection delay T

 Baseline solution:
maximizing detection performance D (using BLLL or greedy)

 Networks: 

 Water network 1 with X = V, Y = E, σ = 2, and λ = 2

 Random geometric graph with X = Y = V, σ = 2, and λ = 1

Numerical Evaluation

3/1/2017
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Numerical Results

3/1/2017
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 Sleep scheduling enables prolonging the lifetime of battery-
powered monitoring devices

 When detection depends on the physical topology of a cyber-
physical system, optimal sleep schedules must take the physical 
topology into account

 Simultaneous placement and scheduling of monitoring devices 
may lead to a substantial increase in detection performance

 For certain applications, minimizing detection delay can lead to 
significantly better schedules

Summary

3/1/2017



Thank you for your attention!

Questions?
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Numerical Results – Water Networks

3/1/2017

Water network 1Water network 2
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