

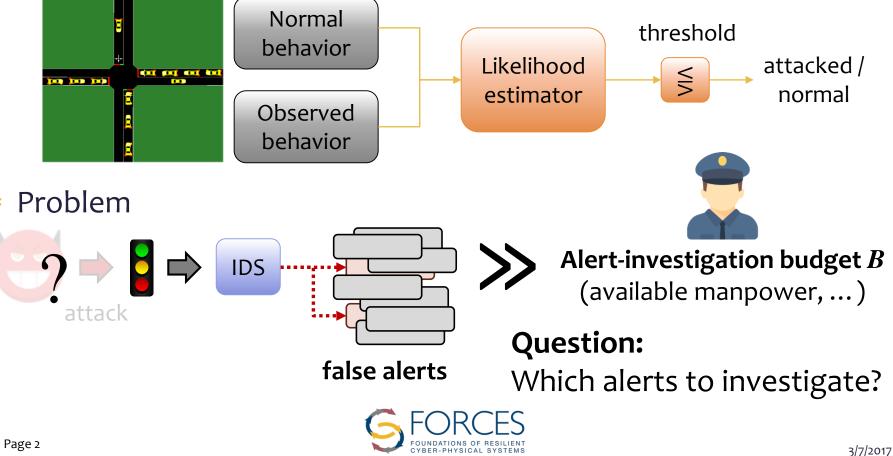
# A Game-Theoretic Approach for Alert Prioritization in Cyber-Physical Systems

#### **Aron Laszka**

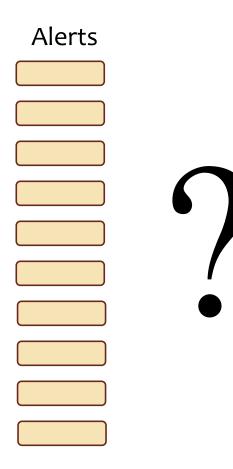
Vanderbilt University





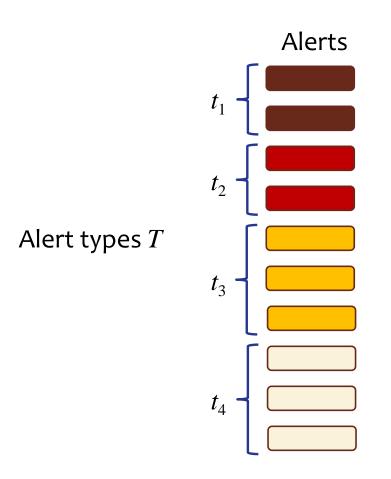





# Physical Anomaly Based Intrusion Detection

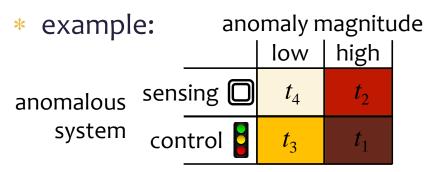
- Resilience to novel threats through anomaly-based detection
- Previously: traffic-anomaly based attack detection



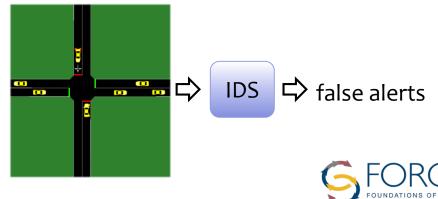

### **Alert Prioritization**





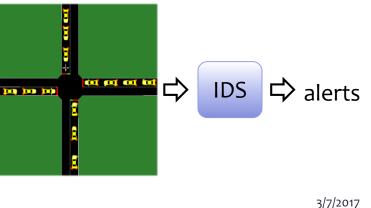

### **Alert Prioritization**





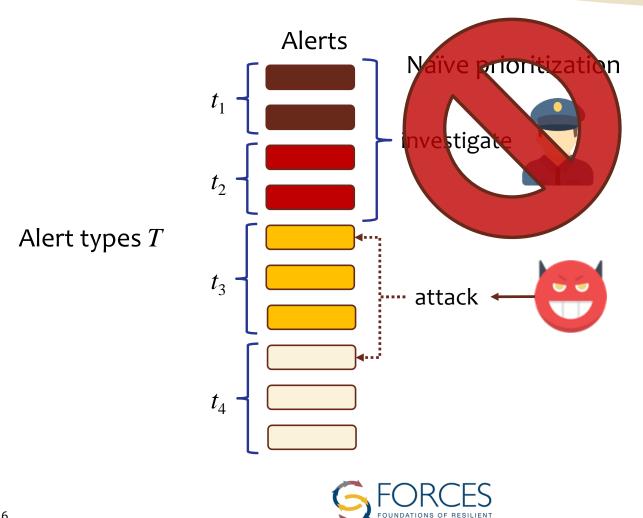

# **Alert Types**

#### \* Alert types T




 cumulative distribution F<sub>t</sub> of the number of false alerts of type t: simulate normal behavior




#### \* Attacks A

- example: attacked devices, integrity / availability
- impact L<sub>a</sub> of attack a:
  our previous work (ICCPS'16)
- **probability** R<sub>a,t</sub> of raising an alert of type t for attack a:
  simulate attack a



### **Alert Prioritization Problem**

CYBER-PHYSICAL SYSTEMS



# **Stackelberg Security Game**



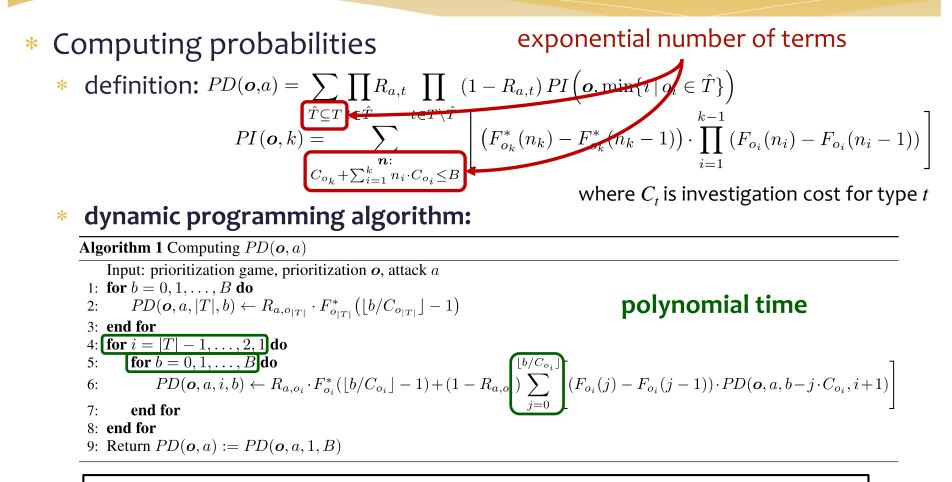
#### 1. Defender

selects alert prioritization strategy p, which is a probability distribution over orderings of T



#### 2. Adversary

selects an attack a from the set of possible attacks A


#### Payoffs

Page 7

- \* let *PD*(*o*, *a*) be probability of investigating attack *a* using ordering *o*
- \* defender's expected loss =  $\sum_{o \in O} p_o \cdot (1 PD(o, a)) \cdot G_a K_a$
- \* adversary's expected payoff =  $\sum p_o \cdot (1 PD(o, a)) \cdot L_a$
- \* Solution concept
  - \* adversary's best response:  $BR(\mathbf{p}) = \operatorname{argmax} \sum p_{\mathbf{o}} \cdot (1 PD(\mathbf{o}, a)) \cdot L_a$  $a \in A$   $\overline{o} \in O$
  - optimal prioritization strategy:  $\min_{a \to a} \sum p_o \cdot (1 PD(o, a)) \cdot G_a K_a$  $\mathbf{p}, a \in BR(\mathbf{p})$

(details can be found in our paper published at AAAI-17 AICS)

### **Computational Results**



Theorem: Finding an optimal prioritization strategy is an NP-hard problem.



# **Column Generation Algorithm**

- Optimal strategy: linear programming based formulation
  - \* for each attack  $a \in A$ :

$$\max_{\boldsymbol{p}} \sum_{\boldsymbol{o} \in O} p_{\boldsymbol{o}} \cdot PD(\boldsymbol{o}, a)$$

subject to

 $\forall a' \in A: \sum_{o \in O} p_o \cdot D(o, a') \ge \Delta(K_{a'})$ exponential number of possible orderings

where

 $D(o, a') = [(1 - PD(o, a))G_a - (1 - PD(o, a'))G_{a'}]$  $\Delta \left( K_{a'} \right) = K_a - K_{a'}$ 

Polynomial-time column-generation approach

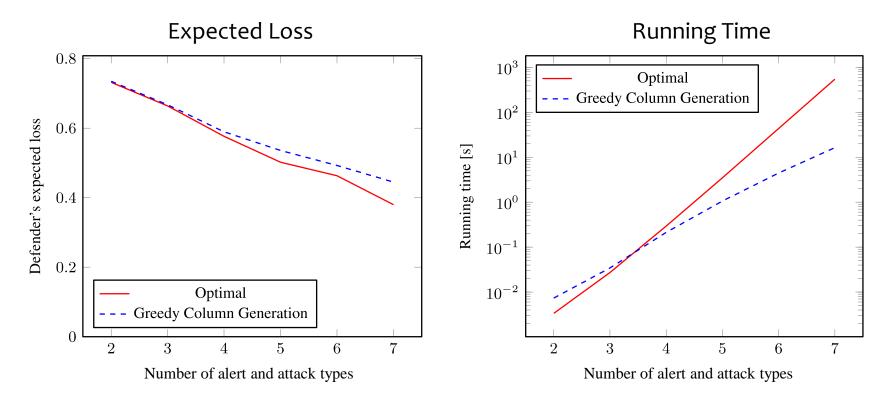
Algorithm 2 Greedy Column Generation

Input: prioritization game, reduced cost function  $\bar{c}$ 

1: 
$$\boldsymbol{o} \leftarrow \emptyset$$

2: while 
$$\exists t \in T \setminus o$$
 do

3: 
$$\boldsymbol{o} \leftarrow \boldsymbol{o} + \operatorname{argmax}_{t \in T \setminus \boldsymbol{o}} \bar{c}(\boldsymbol{o} + t)$$


- 4: end while
- 5: Return o

reduced cost function:

$$\bar{c}(\boldsymbol{o}) = PD(\boldsymbol{o}, a) + \sum_{a' \in A} y(\bar{O}, a')D(\boldsymbol{o}, a')$$



### Numerical Results



 $K_a = 0$ ,  $C_t = 1$ ,  $D_a$  and  $G_a$  are drawn at random from [0.5, 1], B = 5|T|, each  $R_{a,t}$  is either 0 (with probability 1/3) or drawn at random from [0, 1], every  $F_t$  is a Poisson whose mean is drawn at random from [5, 15]



### Conclusion

- \* Anomaly-based intrusion detection for cyber-physical systems
  → prohibitively high number of false alerts
- Alert prioritization:
  deciding which alerts to investigate with a limited budget
  naïve strategies are very vulnerable
- \* Game-theoretic formulation and analysis
  - \* finding optimal prioritization strategy is computationally hard
  - polynomial-time dynamic-programming algorithm for computing detection probabilities
  - \* polynomial-time column-generation approach for alert prioritization



# Thank you for your attention! Questions?