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Inducing Energy Efficient Usage of Shared Resources

Social GAMEe vowwyoussverere
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'L. Ratliff, et al., Allerton, 2014.

L. Ratliff 2/19



Social Game Abstraction
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Motivation

Scaling Up to Games with Many Players

Individual Decision
Making Model
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Scaling Up to Games with Many Players

Many Decision Makers
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Motivation

Scaling Up to Games with Many Players

Many Decision Makers

Individual Decision 15y )
Making Model ©
A
Y € X & () § © estimation/
Ly >X __» Classification
. —_—

v 5 e.g. player classification,
@ estimate energy usage,

/7 estimate average vote, etc.

Can we leverage the individual-level game-theoretic model of decision
making in estimation/classification task?
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1. Strategic Decision-Making

Social Game for Inducing Efficient Usage of Shared Resources
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1. Strategic Decision-Making

Game—Theoretic Generative Behavioral Model
Each occupant selects

€ [min light setting,max light setting]

0 100
in order to maximize
occupant utility = comfort ; desire to win
p y +&i
Wi (xix—i,v58) Yo (xiX—i, Y (xix—;)) w1 (o, V(X x )

& tradeoff between comfort and desire to win, ¥ is the incentive

-
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1. Strategic Decision-Making

Game—Theoretic Generative Behavioral Model
Each occupant selects

€ [min light setting,max light setting]

0 100

in order to maximize

occupant utility = comfort  +&; desire to win
Wi (xix_i,7:E) o (xi X, V(X X)) Vi (xix i, V(X0 X))

& tradeoff between comfort and desire to win, ¥ is the incentive

Definition (Nash Equilibrium)
A collection of lighting settings x = (xi,...,x,) is a Nash equilibrium if
no occupant can increase her utility by selecting a different lighting
setting x}, i.e. for each i€ {1,...,n}

‘P,-(xl-,x_,-,)/(xi,x_,-)) > ‘Pi(xg,x_,-,'}/(x,-,x_,-)) A X; € [0, 100]

. Ratliff 7/19
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1. Strategic Decision-Making

Learning to Learn Framework

Learning to learn: can improve estimation by simultaneously learning
multiple similar tasks

arameters .
> Group-Level Variation

hyper- { ; Vadaaaﬁ E_[ Hi NJV(V,O'), A,,'NF((X,[})

~
J

’______l _____ _ Individual Randomness
N B

SR _I _____ _ Observation
1 )
; f ) &k xb (via game)
L} - J
- k . .
occupant utility = comfort  + & desire to win
W, (i x_i,7:E) Wo (Xi,x -1, Y(xi X)) w1 (o, V(X X))
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2. Bounds on Inference Error

Bounds on Parameter Inference Error

Learning to Learn: we can provide bounds on parameter inference error.

Cramér—Rao bound for hyper—parameters 0 = (@, f3,v,0): Let X’ be all
observations up to time 7. For estimator 6(X"),

A 1
EXt [(9,‘—91')2] Z n—ci, where é:i = —]EXt |:
MSE of 6;

d’Inp(X'|6)
067

curvature

Take Away: lower bound decreases by order 1/n (number of users)
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Cramér—Rao bound for hyper—parameters 0 = (@, f3,v,0): Let X’ be all
observations up to time 7. For estimator 6(X"),

A 1
EXx [(9,‘— 91')2] Z TCI‘, where g,' = —]EXI |:
MSE of 6;

d’Inp(X'|6)
06?

curvature

Take Away: lower bound decreases by order 1/n (number of users)
Bayesian Cramér—Rao Bound for 6, = (u;,4;), for any estimator 6,,
(a—1)Bc 0
gt Acpt n To—(a—1)p
Eer g [(9(5 )_9) (9(5 )_9) } 2 [ 2(al)(a2)ﬁ2]

0 T+20—-2
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Motivation 1. Strategic Decision-Making 2. Bounds on Inference Error 3. Algorithm 4. Examples

Bounds on Parameter Inference Error

Learning to Learn: we can provide bounds on parameter inference error.

Cramér—Rao bound for hyper—parameters 0 = (@, f3,v,0): Let X’ be all
observations up to time 7. For estimator 6(X"),

A 1
EXx [(9,‘— 61-)2} Z Tg, where gi = —]EXI |:
MSE of 6;

d’Inp(X'|6)
06?

curvature
Take Away: lower bound decreases by order 1/n (number of users)

Bayesian Cramér—Rao Bound for 6, = (u;,4;), for any estimator 6,,

(a—1)Bo
Eg | (8(6)-6) (8(8) - G)T} = [””3‘”‘* 2(al)(()a2)ﬁ2]
T+20—2

Take Away: decreases by order 1/T where T is number of samples

Hybrid Cramér—Rao bound applicable to the joint estimation of random and
non—random parameters.
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3. Algorithm

Reliable Estimation of Stopping Time Algorithm

REST: data-driven method based on concentration inequalities.

Consider n >> 1 occupants and a planner with an objective

Folxlox) = x)eEReg.

t n
e Estimate average lighting: %Z (l >, ) :
j=1 i Avg. vote at time j

t .
e Lighting energy: - (‘5\ | > [x-l]i)
Sabsent €S/ Avg. energy at time j

bsent

e Occupant classification error: -5 | 1(h(x],..., x) #yi)
McDiarmid'’s Inequality
For Vj,vx! ... .x" & € 2, if [f(x',... . ... x)—f(x',... &, ... x| < c; for
¢j > 0 (bounded difference property), then for all € >0,

Pr(f — E[f] >£)<exp<zj 1})
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Motivation 1. Strateg ing 2. Bounds on Inference Error 3. Algorithm 4. Examples

REST Algorithm — McDiarmid's method

Stopping time is determined empirically:
1. At time ¢, learn the parameters of the model, 6 « M5 (x)
2. Simulate the data by the model, x*. 7 « My, (8,k —1)

3. Determine the bounded difference property bound c;

Theorem (McDiarmid's stopping time)

The estimated stopping time, ’L’EISDT, by the McDiarmid’'s method satisfies

Pr([f(X)-E[f(X)]|>€) <1-6, V>t

where X' = (x!,...,x") is the data matrix up to time ¢, € is the desired
precision, and 1 — § is the specified probability bound.
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Motivation 1. Strategic Decision-Making 2. Bounds on Inference Error 3. Algorithm 4. Examples Disc

REST Algorithm — Delta method

Delta method: approximate probability distribution for a function of an
asymptotically normal statistical estimator

1. At time ¢, estimate the standard deviation of the sample & < std(y})
2. Determine the stopping condition:

f(x")6 1_o
. >
CI><8,0, N/ 725
®(z;1,0) is the CDF of A4 (u,0) at point z € R.

Theorem (Delta method stopping time)

The stopping time estimate, TESIL, by the Delta method satisfies:

Pr([g(X") ~E[g(X")]| > €) <1-8, Vm > 152,

where X' = (x!,...,x") is the data matrix up to time ¢, £ is the desired precision,

and 1—§ is the specified probability bound.
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4. Examples

Learning Game—Theoretic Behavior Parameter &

Task: estimate y;, mean of trade-off & of winning and comfort
e Trade-off factor & drawn from A" (;, ;)
e Multinomial actions: pS¢fdefault, p3>* absent, p2°t active

occupant utility = comfort ; desire to win
P y ;+§1
Wi (xix_i,7:E) Wo (i, Y(xi.x—1)) W (g, Y (x.x—1))

Unbiased MLE: ; = 157, & (sample mean)

Delta:e:150.95
. —— Dela1550.95
mi —— MeDiarmid::1.55.0.95
AL | —— McDiarmid: £250.95
\ —— Bayesian Cramer-Ras0.4
Hybrid Cramer-Rac0.4

[ Estimation True parameter:j —— Upperfiower bound: s 1 \

+ HHH*H ﬁ&{}*}}f

Estimated parameter
3

s

Stopping time from now (day
5
8

; , ; . , cogssesgesgss
~2rseggesgfd iIIEEREEE
p f 12 1 1
0 80 00 0 0 60 80 Tlezn )

Experimental time (days)
e Remark: Estimates Concentrate

e Estimated Stopping Time via
within bounds around ~ 100 days

Cramér—Rao, McDiarmid, and Delta

L. Ratliff 13/19



4. Examples

Energy Consumption Prediction

Task: estimate the effects of game dynamics on energy savings of the
gl 1
system: E'&" = 8( TS Samen] i Sabsent i

e Mean energy consumption, ug =E [E“ght]

e Percentage of energy consumption below a certain threshold,
pE) =Pr (E"ght < QL) for demand-response programs

h
@
8
S

N
&
3

o Piece-wise linear, only
those present can
control the lighting

150

Lighting energy (kW

40 60 80 1(‘)0
Lighting level (%)

Energy consumption in social games is random and depends on the
competitive environment
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4. Examples

Energy Consumption Prediction

Remark: Active players influence more since they influence the dynamics

o
N

I /o inactive players
[—_Jusua population
[ w/o active players

o
-
o)

e Energy consumption with
the top 10% active/inactive
players removed

Normalized frequency
§ o

)
&

140 150 160 170 180 190 200

Daily lighting energy consumption (kwWh)

Result: Energy estimation starts to concentrate within the tolerance
bounds around day 50
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[ Wenme, — — Ut a2
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Classification of Player Category — Scaling to Many Players

Task: classify agents into different categories based on behavior.
e Incentive design: data-driven method to understand preferences
e Customer segmentation for energy management

User profiles:

Lighting Comfort | Incentive Award | Game Participation
Comforter *** * ****
Gamer * *** ****
Balancer ** ** ****
Nonchalancer * * **

sk

each x indicates abstractly the amount the user types care about each of the categories

-
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Classification of Player Category — Metrics

Method: compare the empirical distribution P; of &/ to the distribution Q;
of & for category j using JS Divergence:

JSD(PI|0) = 5D(P||M)+ 2 D(0I|M)

where M = %(P-I—Q), and D(P||M) = ka(k)ln%-

e Classification rule:

h(x}) = argmin JSD(P;||Q;).
Jjef1.23.4}

e Cost function (proportion of misclassified users):
L(h:x'.y) Zl xi) £ i)
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4. Examples

Classification of Player Category — Results

Random function of deviation from the best performance:

flhix'y) =

Bound on loss: Pr (Lt > s+1<t+p) < Pr(

el v) i ) :
L(h;x',y) hler;ffE[L(h,x,y)],

~E[f]>¢e)<1-6

Simulation: 33 replicates of each type using occupant models generated
out of data from real experiments (distribution of &;).

Estimated stopping time

02

I starting point: 20 days|
[__Istarting point: 40 days|
[ starting point: 60 days|

Normalized frequency
°

o 50 100 150 200 250 300
Estimated total length of experiment (days)

mean= 89 (blue), 78 (yellow), 94 (red)

L. Ratliff

Misclassification error plateaus =~ day 80

o |
B Hmwmmwuwww

22889828°85592892322535528932°28S
ooooooooooooooooooooooooooooooooooooo
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

o o o
N o s

Misclassification rate
°

REST captures the complexity of the problem
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Discussion

Conclusion and Future Work

Algorithm for computing sampling time via concentration inequalities

e Allows for scaling from individual inference tasks to higher-order learning
tasks with many players.

e e.g. parameter inference, energy consumption estimation, user type
classification

e Results can improve automation and control, provide guarantees for demand
response programs, and for incentives design

e generic enough to apply to any scenario where learning behavior of
large numbers of competitive agents is desired!
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Discussion

Conclusion and Future Work

Algorithm for computing sampling time via concentration inequalities

e Allows for scaling from individual inference tasks to higher-order learning
tasks with many players.

e e.g. parameter inference, energy consumption estimation, user type
classification

e Results can improve automation and control, provide guarantees for demand
response programs, and for incentives design

e generic enough to apply to any scenario where learning behavior of
large numbers of competitive agents is desired!

Future work:
e Employ algorithm in practice in Singapore with large number of agents.

e |mprove the behavioral model of competitive agents: model-based vs.
data-driven techniques for learning utility functions

e Add privacy guarantees, e.g. differential privacy constraints.
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