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Inducing Energy Efficient Usage of Shared Resources

Social game for changing
usage of shared resources.
e.g. Lights, HVAC, etc.

Points are used to determine
probability of winning in lottery

1L. Ratliff, et al., Allerton, 2014.
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Social Game Abstraction
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Scaling Up to Games with Many Players

Individual Decision
Making Model

ξ ξ̂ (x)
γ x ξ̂
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Scaling Up to Games with Many Players

Individual Decision
Making Model

ξ ξ̂ (x)
γ x ξ̂

Many Decision Makers

X

estimation/
classification

ε,δ

e.g. player classification,

estimate energy usage,

estimate average vote, etc.
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Scaling Up to Games with Many Players

Individual Decision
Making Model

ξ ξ̂ (x)
γ x ξ̂

Many Decision Makers

X

estimation/
classification

ε,δ

e.g. player classification,

estimate energy usage,

estimate average vote, etc.

Can we leverage the individual-level game-theoretic model of decision
making in estimation/classification task?
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Today’s Talk

Many

Few

1. Strategic Decision-Making

2. Bounds on Inference Error
3. Algorithm for Computing

Stopping Time
4. Examples:

• Behavior Parameter Inference

• Energy Consumption Prediction

• Classification of Players
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Social Game for Inducing Efficient Usage of Shared Resources

Non–Cooperative Game

Building Manager, utilityp

Occupantn

Occupant1

Occupant2

utilityn+mech.

utility1+mech.

utility2+mech.

Utility Learning
(Estimation)

response
occupant

Fixed Incentive
(Control)

mechanism

parameters
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Game–Theoretic Generative Behavioral Model

Each occupant selects

vote︸︷︷︸
xi

∈ [min light setting︸ ︷︷ ︸
0

,max light setting︸ ︷︷ ︸
100

]

in order to maximize

occupant utility︸ ︷︷ ︸
Ψi(xi,x−i,γ;ξ )

= comfort︸ ︷︷ ︸
ψ0(xi,x−i,γ(xi,x−i))

+ξi desire to win︸ ︷︷ ︸
ψ1(xi,x−i,γ(xi,x−i))

ξi: tradeoff between comfort and desire to win, γ is the incentive

Definition (Nash Equilibrium)

A collection of lighting settings x = (x1, . . . ,xn) is a Nash equilibrium if
no occupant can increase her utility by selecting a different lighting
setting x′i, i.e. for each i ∈ {1, . . . ,n}

Ψi(xi,x−i,γ(xi,x−i))≥Ψi(x′i,x−i,γ(xi,x−i)) ∀ x′i ∈ [0,100]
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Learning to Learn Framework

Learning to learn: can improve estimation by simultaneously learning
multiple similar tasks

ν ,σ ,α,β

µi,λi

ξ k
i

hyper-

parameters

µi ∼N (ν ,σ), λi ∼ Γ(α,β )

Group-Level Variation

ξ k
i ∼ N (µi,λi)

Individual Randomness

ξ k
i 7→ xk

i (via game)

Observation

occupant utility︸ ︷︷ ︸
Ψi(xi,x−i,γ;ξ )

= comfort︸ ︷︷ ︸
ψ0(xi,x−i,γ(xi,x−i))

+ξ
k
i desire to win︸ ︷︷ ︸

ψ1(xi,x−i,γ(xi,x−i))
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Bounds on Parameter Inference Error

Learning to Learn: we can provide bounds on parameter inference error.

Cramér–Rao bound for hyper–parameters θ = (α,β ,ν ,σ): Let Xt be all
observations up to time t. For estimator θ̂(Xt),

EXt

î
(θ i− θ̂ i)

2
ó

︸ ︷︷ ︸
MSE of θi

≥ 1
nζi

, where ζi =−EXt

ñ
∂ 2 lnp(Xt|θ)

∂θ
2
i

ô
︸ ︷︷ ︸

curvature

Take Away: lower bound decreases by order 1/n (number of users)

Bayesian Cramér–Rao Bound for θr = (µi,λi), for any estimator θ̂r,

E
ξ

t,θ

[Ä
θ̂(ξ t)−θ

äÄ
θ̂(ξ t)−θ

äT]
≥

[
(α−1)βσ

Tσ−(α−1)β 0

0 2(α−1)(α−2)β 2

T+2α−2

]
Take Away: decreases by order 1/T where T is number of samples

Hybrid Cramér–Rao bound applicable to the joint estimation of random and
non–random parameters.
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Reliable Estimation of Stopping Time Algorithm

REST: data-driven method based on concentration inequalities.

Consider n >> 1 occupants and a planner with an objective
f : (x1, . . . ,xt) 7→ f (x1, . . . ,xt) ∈ R e.g.

• Estimate average lighting: 1
t

t∑
j=1

(
1
n

n∑
i=1

[xj]i
)

Avg. vote at time j
.

• Lighting energy: 1
t

t∑
j=1

g
Ç

1
|S\Sj

absent|
∑

i6∈Sj
absent

[xj]i

å
Avg. energy at time j

• Occupant classification error: 1
n
∑n

i=1 1(h(x1
i , . . . ,xt

i) 6= yi)

McDiarmid’s Inequality

For ∀j,∀x1, ...,xt, x̂j ∈X , if |f (x1, . . . ,xj, . . . ,xt)− f (x1, . . . , x̂j, . . . ,xt)| ≤ cj for
cj > 0 (bounded difference property), then for all ε > 0,

Pr(f −E[f ]≥ ε)≤ exp
Å
−2ε2∑t

j=1 c2
j

ã
L. Ratliff 10 / 19
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REST Algorithm — McDiarmid’s method

Stopping time is determined empirically:

1. At time t, learn the parameters of the model, θ̂ ←Mest(xt)

2. Simulate the data by the model, xk−t
sim ←Msim(θ̂ ,k− t)

3. Determine the bounded difference property bound cj

Theorem (McDiarmid’s stopping time)

The estimated stopping time, τEST
MD , by the McDiarmid’s method satisfies

Pr
Ä ∣∣f (Xt)−E

[
f (Xt)

]∣∣≥ ε
ä
≤ 1−δ , ∀t ≥ τ

EST
MD

where Xt = (x1, . . . ,xt) is the data matrix up to time t, ε is the desired
precision, and 1−δ is the specified probability bound.
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REST Algorithm — Delta method

Delta method: approximate probability distribution for a function of an
asymptotically normal statistical estimator

1. At time t, estimate the standard deviation of the sample σ̂ ← std(yt
1)

2. Determine the stopping condition:

Φ

Ç
ε;0,

f ′(xt)σ̂√
k

å
− 1

2
≥ δ

2
,

Φ(z; µ,θ) is the CDF of N (µ,θ) at point z ∈ R.

Theorem (Delta method stopping time)

The stopping time estimate, τEST
Delta, by the Delta method satisfies:

Pr
(
|g(Xm)−E [g(Xm)]| ≥ ε

)
≤ 1−δ , ∀m≥ τ

EST
Delta

where Xt = (x1, . . . ,xt) is the data matrix up to time t, ε is the desired precision,
and 1−δ is the specified probability bound.
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Learning Game–Theoretic Behavior Parameter ξ

Task: estimate µi, mean of trade-off ξi of winning and comfort

• Trade-off factor ξi drawn from N (µi,λi)

• Multinomial actions: pdef
i default, pabs

i absent, pact
i active

occupant utility︸ ︷︷ ︸
Ψi(xi,x−i,γ;ξ )

= comfort︸ ︷︷ ︸
ψ0(xi,x−i,γ(xi,x−i))

+ξi desire to win︸ ︷︷ ︸
ψ1(xi,x−i,γ(xi,x−i))

Unbiased MLE: µ̂1 =
1
t
∑t

k=1 ξ k
1 (sample mean)
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McDiarmid: ε:1.5,δ:0.95
McDiarmid: ε:2,δ:0.95
Bayesian Cramer−Rao: ε:0.4
Hybrid Cramer−Rao: ε:0.4

Estimated Stopping Time via
Cramér–Rao, McDiarmid, and Delta
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Remark: Estimates Concentrate
within bounds around ∼ 100 days
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Energy Consumption Prediction

Task: estimate the effects of game dynamics on energy savings of the

system: Elight = g
Ç

1
|S\Sabsent|

∑
i 6∈Sabsent

xi

å
• Mean energy consumption, µE = E

î
Elight

ó
• Percentage of energy consumption below a certain threshold,

pE,λ = Pr
Ä
Elight < λ

ä
for demand-response programs

• Piece-wise linear, only
those present can
control the lighting

0 20 40 60 80 100
50

100

150

200

250

300

Lighting level (%)

Li
gh

tin
g 

en
er

gy
 (

kW
h)

 

 

measurements
piece−wise linear fits

Energy consumption in social games is random and depends on the
competitive environment
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Energy Consumption Prediction

Remark: Active players influence more since they influence the dynamics

• Energy consumption with
the top 10% active/inactive
players removed
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Result: Energy estimation starts to concentrate within the tolerance
bounds around day 50

160

165

170

175

180

185

190

195

200

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Time horizon (days)

D
ai

ly
 e

ne
rg

y 
co

ns
um

pt
io

n 
(k

W
h)

 

 
Estimation Mean energy: µ

E
Upper/lower bound: µ

E
± 2

50 100 150 200 250 300
0

100

200

300

400

500

600

Experimental time (days)

St
op

pi
ng

 ti
m

e 
(d

ay
s)

 

 

Delta: ε:1,δ:0.95
Delta: ε:2,δ:0.95
McDiarmid: ε:2,δ:0.90
McDiarmid: ε:3,δ:0.90

L. Ratliff 15 / 19



Motivation 1. Strategic Decision-Making 2. Bounds on Inference Error 3. Algorithm 4. Examples Discussion

Classification of Player Category — Scaling to Many Players

Task: classify agents into different categories based on behavior.

• Incentive design: data-driven method to understand preferences

• Customer segmentation for energy management

User profiles:

Lighting Comfort Incentive Award Game Participation

Comforter FFF F FFFF
Gamer F FFF FFFF
Balancer FF FF FFFF
Nonchalancer F F FF

∗∗ each ? indicates abstractly the amount the user types care about each of the categories
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Classification of Player Category — Metrics

Method: compare the empirical distribution Pi of ξ t
i to the distribution Qj

of ξj for category j using JS Divergence:

JSD(P||Q) =
1
2

D(P||M)+
1
2

D(Q||M)

where M = 1
2(P+Q), and D(P||M) =

∑
k P(k) ln P(k)

Q(k) .

• Classification rule:

h(xt
i) = argmin

j∈{1,2,3,4}
JSD(Pi||Qj).

• Cost function (proportion of misclassified users):

L(h;xt,y) =
1
n

n∑
i=1

1(h(xt
i) 6= yi);

L. Ratliff 17 / 19



Motivation 1. Strategic Decision-Making 2. Bounds on Inference Error 3. Algorithm 4. Examples Discussion

Classification of Player Category — Results

Random function of deviation from the best performance:

f (h;xt,y) = L(h;xt,y)− inf
h∈H

E [L(h;x,y)] ;

Bound on loss: Pr
Ä
Lt ≥ ε +κt +ρ

ä
≤ Pr

Ä
ft−E [ft]≥ ε

ä
≤ 1−δ

Simulation: 33 replicates of each type using occupant models generated
out of data from real experiments (distribution of ξi).

Estimated stopping time
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REST captures the complexity of the problem
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Conclusion and Future Work

Algorithm for computing sampling time via concentration inequalities

• Allows for scaling from individual inference tasks to higher-order learning
tasks with many players.

• e.g. parameter inference, energy consumption estimation, user type
classification

• Results can improve automation and control, provide guarantees for demand
response programs, and for incentives design

• generic enough to apply to any scenario where learning behavior of
large numbers of competitive agents is desired!

Future work:

• Employ algorithm in practice in Singapore with large number of agents.

• Improve the behavioral model of competitive agents: model-based vs.
data-driven techniques for learning utility functions

• Add privacy guarantees, e.g. differential privacy constraints.
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