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Interaction as a Stochastic Hybrid System

Estimation

human variability,
cognitive state
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Physical World

safety-critical dynamical system,
control by human is stochastic

Trr1 = fr(qr, T, ug)

Control

assumption mining enables
safety verification
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* Proofs of correctness, tools for synthesis

* Hierarchical Decision Making and Controller Synthesis: Scaling
Up

* reinforcement learning operates on-line but often makes myopic
decisions

* model-based planning leverages known structure to ensure high-
quality decisions

* Learning by Doing
* |learn from rich instruction; provide advice & reward to human

* robust to inconsistency; respects neuronal learning speed in human
sensori-motor loop
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| OGIC SPECIFICATION

Controller Synthesis from Logic Specifications

Realizable
Goal
. ntroller
Environment Model g(;/nthoeseis P @ 0o
Human Model

(Given a formal specification, encoding the
objective,
environment model,
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synthesize a controller that is guaranteed to satisfy the specification.
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* Closed-Loop Human Modeling
« Planning to Leverage Effects on Humans

Controller Synthesis
from Formal Specifications

« Systematic Human-Intervention
« Control under Uncertainty
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Interaction with Humans

Google’s Driverless Cars Run Into Problem: Cars With Drivers

By MATT RICHTEL and CONOR DOUGHERTY SEPT. 1, 2015

MOUNTAIN VIEW, Calif. — Google, a leader in
efforts to create driverless cars, has run into an

N Email

odd safety conundrum: Its cars don’t make
enough mistakes.

Y Tves  “One of the biggest challenges facing

automated cars is blending them into a

» ore world in which humans don’t behave by
s the book.”

Google’s Tleet of autonomous test cars 18
programmed to follow the letter of the law. But
it can be tough to get around if you are a stickler
for the rules. One Google car, in a test in 20009,

K} share

]

The Google self- drlvmg car, with Eri
couldn’t get through a four-way stop because its Transportation Secretary Anthony Foxx.

sensors kept waiting for other (human) drivers

mpany's executive chairman, and
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It Is difficult to deal with hu :
eliminate the driver.

Are you going? Or should I go?

You go first.

What if I point a lot
and flail my arms around?

This is confusing.

Wait, maybe you should go. )

Let's just sit here
and reflect.
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Learn Human’s reward function based on Inverse
Reinforcement Learning:

exp( (Xo, Ug,Up))
f exp( (x(], Ug, ﬁH)) d ﬁH

P(uH|x0) W) =

rH(xt, u}tq,ufq) =w! ¢(xt uk,ub)

(a) Features for the (b) Feature for staying (c) Features for avoiding
boundaries of the road inside the lanes. other vehicles.

B. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning. In AAAI, 2008.
S. Levine, V. Koltun. Continuous inverse optimal control with locally optimal examples. arXiv , 2012.
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e
Autonomous vehicle optimizes for efficiency, and

leverages affects on the human.

! |||l

=~ Affect Human
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:

Reward for making the
human cross first.

Speed: 0.00

Autonomous vehicle backs up to
communicate with the human, and

make her cross first.

1.2

10}

y of human vehicle
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Active Information Gathering

Active information
gathering over
human’s internal state.

Human’s internal state:
@ : Aggressive vs
Afttentive vs 0.6

y of human

-0.2
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* RL can not be used in a safety critical environment!

* Machine learning algorithms converge asymptotically
* Some natural parameterization can behave poorly during training

* Developed framework for combining arbitrary ML methods with safety analysis
techniques

* How can we use reinforcement learning to improve performance online, while still
guaranteeing system safety?

* @uaranteed-safe online learning via reachability [Gillula, Tomlin ’14]

+ Safe exploration and model validation [Akametalu, Fisac, Tomlin "14, "15]

* |nitialize active unsafe set = smallest candidate set
* Repeat:
» Measure disturbance

 Validate measured disturbance at visited states
against model

« If model inaccuracy is detect eﬁ@ﬁ{‘éﬁ?

pagerg *  Update disturbance model
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Pilots instructed to attempt to collide vehicles

[STARMAC: Stanford Testbed ongﬂrp@Né:Egtorcraft for MultlAgent Control]
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Backwards Reachable Set

desired

Capture property can also be encoded as a condition on the system’s reachable set of
states

o _ OJ(x,t)
_mln{O,mU!nmC?x Py f(x,u,d)}

~0J (=, 1)
ot




capture sets,
starting from the target set and
working backwards

Target Set

Avoid sets can be
combined with capture
sets to guarantee

Unsafe Set t;’?,q

safety
+ min[0, H*(x, 3{,(}? 2 )] =0
oJ(z, t}}
dx B .
aJ(x, t)
min max — 2 - flr,u, d, t)

Subjectto  J(x,t) > —¢4



mpose practlca onstramtss
 Protocols, additional problem structure

* Approximations
+  Bisimulations (Girard, Pappas, Tabuada)
« Piecewise and multi-affine systems (Morari, Borrelli, Krogh, Johansson, Rantzer, Belta)
« Ellipsoidal and polyhedral sets (Kurzhanski, Varaiya, Stipanovic)
* Funnels and barrier certificates (Parillo, Majumdar, Tedrake, Papachristodoulou, Julius, Lall, Topcu)
«  Decoupling disturbances (Chen, Herbert)

* Mathematical structure
“ Monotone systems (Sontag, Del Vecchio, Arcak, Coogan)
«  LTL specifications (Kress-Gazit, Raman, Murray, Wongpiromsarn, Belta)

+ Decompositions (Mitchell, Del Vecchio, Chen, Herbert, Grizzle, Ames, Tabuada)

FOUNDATIONS OF RESILIENT
CYBER-PHYSICAL SYSTEMS

Page 23

CD FORCES



RN —————
Example 2: Platooning UAVs

Bay Area Map, Shortest Paths Speed Profile, Shortest Paths, Value Function
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Leave highwa

Follow highway
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platoon
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new
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The quadrotor first:
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After about 1 minute,

Time

It can roughly track the trajectory

Soon, it starts experimenting

..but the safe controller steps

IN

. Kolter and Ng, 200
C, FORERS 8 2009]
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- Tracking resumes after’a
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. Quadrotor
Computing

GPS-enabled
Smartphones

Vehicle Control Human Collaboration
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