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AlphaGo: Winning over World Champion

Computer Programs Calibration Human Players
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Achieving Human-Level Performance on ImageNet Classification

152 layers
A
%
&
L]
%
L
L
!
L1
| 22layers | | 19 Iayrers |
‘6.7

.1.5? I o _I 8layers || 8layers ] shallnw

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Source: Kaiming He



Deep Learning Powering Everyday Products
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Al and Security in Cyber Physical Systems

Enabler

* Al enables security applications

e Security enables better Al
* Integrity: produces intended/correct results (adversarial machine learning)

* Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-
preserving machine learning)

* Preventing misuse of Al



Deep Learning Improving Security Capabilities
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Firmware of loT devices

* Binary code in various ISA
* X86, MIPS, ARM, etc.

* Employ common open sourced code:
* For example: OpenSSL

* Common vulnerability
* Heartbleed



Deep Learning for loT Vulnerability Detection

* Neural Network-based Graph Embedding for Cross-Platform Binary
Code Search [XLFSSY, ACM Computer and Communication
Symposium 2017]

« See talk by Chang Liu



Al and Security in Cyber Physical Systems

Enabler

* Al enables security applications

e Security enables better Al
* Integrity: produces intended/correct results (adversarial machine learning)

* Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-
preserving machine learning)

* Preventing misuse of Al



Al and Security: Al in the presence of attacker




Al and Security: Al in the presence of attacker

* Important to consider the presence of attacker

* History has shown attacker always follows footsteps of new technology development (or
sometimes even leads it)

* The stake is even higher with Al
* As Al controls more and more systems, attacker will have higher & higher incentives

* As Al becomes more and more capable, the consequence of misuse by attacker will become more and more
severe




Al and Security: Al in the presence of attacker

e Attack Al

* Cause learning system to not produce intended/correct results

* Cause learning system to produce targeted outcome designed by attacker
e Learn sensitive information about individuals

* Need security in learning systems

* Misuse Al

* Misuse Al to attack other systems
* Find vulnerabilities in other systems
* Target attacks
* Devise attacks

* Need security in other systems



Al and Security: Al in the presence of attacker

o Attack Al:

* Cause learning system to not produce intended/correct results

e Cause learning system to produce targeted outcome designed by attacker
e Learn sensitive information about individuals
* Need security in learning systems

* Misuse Al
* Misuse Al to attack other systems
* Find vulnerabilities in other systems
* Target attacks
* Devise attacks
* Need security in other systems



Deep Learning Systems Are Easily Fooled

doutput
Opixels

Szegedy, C., Zaremba, W., Sutskever, |., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. Intriguing properties of neural
networks. ICLR 2014.



Adversarial examples fooling autonomous vehicles
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Subtle Perturbations
Robust Physical-World Attacks on Machine Learning Models [EEFKLPRS, 2017]
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Camouflage Perturbations

Robust Physical-World Attacks on Machine Learning Models [EEFKLPRS, 2017]



Adversarial Examples Prevalent in Deep Learning Systems

* Most existing work on adversarial examples:
* Image classification task
* Target model is known

* Our investigation on adversarial examples:

DECLE DEsE Blackbox

Attacks

Generative
Models

Reinforcement Captioning/
Learning Image-to-code

Weaker Threat Models
(Target model is unknown)

Other tasks and model classes



Generative models

. VAE-like models (VAE, VAE-GAN) use an intermediate latent
representation

. An encoder: maps a high-dimensional input into lower-
dimensional latent representation z.

. A decoder: maps the latent representation back to a high-
dimensional reconstruction.

Encoder Decoder R
X —=> - 7 —> - Y
fv.‘enc fdec




Adversarial Examples in Generative Models

. An example attack scenario:

. Generative model used as a compression scheme
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Attacker Compression

. Attacker’s goal: for the decompressor to reconstruct a
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Decompression

different image from the one that the compressor sees.



Adversarial Examples for VAE-GAN in MNIST
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Adversarial examples

Jernej Kos, lan Fischer, Dawn Song: Adversarial Examples for Generative Models



Adversarlal Examples for VAE-GAN in SVHN

Target Image

Adversarial examples Reconstruction of adversarial examples

Jernej Kos, lan Fischer, Dawn Song: Adversarial Examples for Generative Models



Reconstruction of original images
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Jernej Kos, lan Fischer, Dawn Song: Adversarial Examples for Generative Models



Deep Reinforcement Learning Agent (A3C) Playing Pong

Original Frames

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].



Adversarial Examples on A3C Agent on Pong

FGSM Evaluation (0.005)
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Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop, 2017]



Attacks Guided by Value Function

FGSM (0.005), Skip 10
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Agent In Action

Original Frames With FGSM perturbations With FGSM perturbations
(e = 0.005) inject in (e = 0.005) inject based
every frame on value function

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].



Adversarial Examples Prevalent in Deep Learning Systems

* Most existing work on adversarial examples:
* Image classification task
* Target model is known

e Our investigation on adversarial examples:

Deep
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Numerous Defenses Proposed

* Input processing
e Gaussian blur, median blur
* Quantization

* Adversary re-training
e Re-train with generated adversarial examples

* Detecting adversarial examples
* Detecting anomalous high-frequency patterns in input
* Detecting anomalous activations
* Detecting low confidence output



Numerous Defenses Proposed
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No Sufficient Defense Today

* Strong, adaptive attacker can easily evade today’s defenses

* Ensemble of weak defenses does not (by default) lead to strong defense
* Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song [WOOT 2017]



Adversarial Machine Learning

* Adversarial machine learning:
* Learning in the presence of adversaries

* Inference time: adversarial example fools learning system
* Evasion attacks

* Evade malware detection; fraud detection

* Training time:

Attacker poisons training dataset (e.g., poison labels) to fool learning system to learn wrong model
e Poisoning attacks: e.g., Microsoft’s Tay twitter chatbot

Attacker selectively shows learner training data points (even with correct labels) to fool learning
system to learn wrong model

Data poisoning is particularly challenging with crowd-sourcing & insider attack
Difficult to detect when the model has been poisoned

* Adversarial machine learning particularly important for security critical system



Security will be one of the biggest challenges in Deploying Al




Security of Learning Systems

* Software level
* Learning level

e Distributed level



Challenges for Security at Software Level

* No software vulnerabilities (e.g., buffer overflows & access control issues)

» Attacker can take control over learning systems through exploiting software
vulnerabilities



Challenges for Security at Software Level

* No software vulnerabilities (e.g., buffer overflows & access control issues)

» Existing software security/formal verification techniques apply
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Progression of my approach to software security over last 20 years



Security of Learning Systems

e Software level

* Learning level

e Distributed level



Challenges for Security at Learning Level

* Evaluate system under adversarial events, not just normal events



Regression Testing vs. Security Testing
in Traditional Software System

Regression Testing

Security Testing

Operation

Run program on normal
inputs

Run program on
abnormal/adversarial inputs

Goal

Prevent normal users from
encountering errors

Prevent attackers from
finding exploitable errors




Regression Testing vs. Security Testing
In Learning System

Regression Testing

Security Testing

Train on noisy training data:

Train on poisoned training
data: Estimate resiliency

Training | Estimate resiliency against . . ..
: L against poisoned training
noisy training inputs :
Inputs
Test on
. Test on normal inputs: abnormal/adversarial inputs:
Testing

Estimate generalization error

Estimate resiliency against
adversarial inputs




Challenges for Security at Learning Level

* Evaluate system under adversarial events, not just normal events
* Regression testing vs. security testing

* Reason about complex, non-symbolic programs



Decades of Work on Reasoning about Symbolic Programs

* Symbolic programs:
e E.g., OS, File system, Compiler, web application, mobile application
e Semantics defined by logic

* Decades of techniques & tools developed for logic/symbolic reasoning

* Theorem provers, SMT solvers
e Abstract interpretation



Era of Formally Verified Systems

Verified: Micro-kernel, OS, File system, Compiler, Security protocols, Distributed systems

IronClad/IronFleet

Security. Performance . Proaf.

FSCQ CertiKOS miTLS/Everest

EasyCrypt CompCert



Powerful Formal Verification
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No Sufficient Tools to Reason about Non-Symbolic Programs

* Symbolic programs: *gz
* Semantics defined by logic é é
* Decades of techniques & tools developed for logic/symbolic reasoning

* Theorem provers, SMT solvers
e Abstract interpretation

* Non-symbolic programs: -
* No precisely specified properties & goals
* No good understanding of how learning system works
* Traditional symbolic reasoning techniques do not apply



Challenges for Security at Learning Level

* Evaluate system under adversarial events, not just normal events
* Regression testing vs. security testing

* Reason about complex, non-symbolic programs

* Design new architectures & approaches with stronger generalization &
security guarantees



Neural Program Synthesis

Can we teach computers to write code?

@ ),
& )
Example Applications: “Software is eating the world” --- az16
* End-user programming T
 Performance optimization of code Program synthesis can automate this &

e Virtual assistant democratize idea realization



Neural Program Synthesis
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Neural Program Synthesis

o 123 452 612 | t
Tralnin 234 345 367 npu

g data 8 8 8
357 797 979 Output

!
[ Neural Program ]

Architecture
v

o2
?8 —» 0@2"0‘2‘};.

o/®
Test input

-+ —> 120
Learned
neural

a2 aVeal=alas)

Test output



Neural Program Architectures

Neural Turing Machine Learning Simple Algorithms from

(Graves et al) Stack Recurrent Nets (Joulin etal) Examples (Zaremba et al)
Nov 2014 May 2015 Dec 2015 May 2016  June 2016 Oct2016 >

Reinforcement Learning  Neural Programmer (Neelankatan et al)
Neural Turing Machines ~ Neural Programmer-Interpreter (Reed et al)
(Zaremba et al) Neural GPU (Kaiser et al)

Differentiable Neural
Computer (Graves et al)

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path



Challenge 1: Generalization
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Challenge 2: No Proof of Generalization
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Our Approach: Introduce Recursion

Learn recursive neural programs

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion
[ICLR 2017, Best Paper Award ]



Recursion

* Fundamental concept in Computer Science and Math
 Solve whole problem by reducing it to smaller subproblems (reduction rules)
* Base cases (smallest subproblems) are easier to reason about
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Our Approach: Making Neural Programming Architectures Generalize via Recursion

* Proof of Generalization:
* Recursion enables provable guarantees about neural programs
* Prove perfect generalization of a learned recursive program via a verification procedure
* Explicitly testing on all possible base cases and reduction rules (Verification set)

* Learn & generalize faster as well
* Trained on same data, non-recursive programs do not generalize well

Accuracy on Random Inputs for Quicksort

Length of Array  Non-Recursive Recursive

; 100% 100% . Nando de Freitas
5 100%% 100%% ' g This paper is a breakthrough!Dawn Song
. ,]i“;{; }Hﬁﬁi and her team have shown that recursion is
15 60% 100% the key to true generalisation.

20 0% 1005
22 20% 1005,
25 333% 1005,
30 333% 1005,
70 0% 1005

openreview.net/forum?id=BkbY4...

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion [ICLR 2017, Best Paper Award ]



Importance of Recursion in Neural Program Architectures

e \We introduce recursion, for the first time, into neural program architectures,
and learn recursive neural programs

e \We address two main challenges using
recursion:

o Generalization to more complex inputs

o Proof of generalization



Lessons

* Program architecture impacts generalization & provability

* Recursive, modular neural architectures are easier to reason, prove, generalize

* Explore new architectures and approaches enabling strong generalization & security
properties for broader tasks



Challenges for Security at Learning Level

* Evaluate system under adversarial events, not just normal events
* Reason about complex, non-symbolic programs

* Design new architectures & approaches with stronger generalization &
security guarantees

* Reason about how to compose components



Compositional Reasoning

* Building large, complex systems require compositional reasoning

* Each component provides abstraction
* E.g., pre/post conditions
e Hierarchical, compositional reasoning proves properties of whole system

* How to do abstraction, compositional reasoning for non-symbolic programs?



Security of Learning Systems

e Software level

* Learning level
* Evaluate system under adversarial events, not just normal events
e Reason about complex, non-symbolic programs
e Design new architectures & approaches with stronger generalization & security guarantees
e Reason about how to compose components

 Distributed level
e Each agent makes local decisions; how to make good local decisions achieve good global decision?



Al and Security: Al in the presence of attacker

e Attack Al
* Integrity:
e Cause learning system to not produce intended/correct results
e Cause learning system to produce targeted outcome designed by attacker
* Confidentiality:
* Learn sensitive information about individuals
* Need security in learning systems

* Misuse Al

* Misuse Al to attack other systems
* Find vulnerabilities in other systems
* Target attacks
* Devise attacks

* Need security in other systems



Misused Al can make attacks more effective

Deep Learning Empowered
Bug Finding

Deep Learning Empowered
Phishing Attacks



Misused Al for large-scale, automated, targeted manipulation
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Future of Al and Security

How to better understand what security means for Al, learning systems?

How to detect when a learning system has been fooled/compromised?

How to build better resilient systems with stronger guarantees?

How to build privacy-preserving learning systems?



Security will be one of the biggest challenges in Deploying Al







