
Dawn Song

UC Berkeley

AI and Security in Cyber Physical Systems

AlphaGo: Winning over World Champion

Source: David Silver

Achieving Human-Level Performance on ImageNet Classification

Source: Kaiming He

Deep Learning Powering Everyday Products

pcmag.com theverge.com

AI and Security in Cyber Physical Systems

Security AI

Enabler

Enabler

• AI enables security applications

• Security enables better AI
• Integrity: produces intended/correct results (adversarial machine learning)

• Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-
preserving machine learning)

• Preventing misuse of AI

Deep Learning Improving Security Capabilities

DeepFace

Firmware of IoT devices

• Binary code in various ISA
• X86, MIPS, ARM, etc.

• Employ common open sourced code:
• For example: OpenSSL

• Common vulnerability
• Heartbleed

Deep Learning for IoT Vulnerability Detection

• Neural Network-based Graph Embedding for Cross-Platform Binary
Code Search [XLFSSY, ACM Computer and Communication
Symposium 2017]
• See talk by Chang Liu

AI and Security in Cyber Physical Systems

Security AI

Enabler

Enabler

• AI enables security applications

• Security enables better AI
• Integrity: produces intended/correct results (adversarial machine learning)

• Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-
preserving machine learning)

• Preventing misuse of AI

AI and Security: AI in the presence of attacker

AI and Security: AI in the presence of attacker

• Important to consider the presence of attacker

• History has shown attacker always follows footsteps of new technology development (or
sometimes even leads it)

• The stake is even higher with AI
• As AI controls more and more systems, attacker will have higher & higher incentives

• As AI becomes more and more capable, the consequence of misuse by attacker will become more and more
severe

AI and Security: AI in the presence of attacker

• Attack AI
• Cause learning system to not produce intended/correct results

• Cause learning system to produce targeted outcome designed by attacker

• Learn sensitive information about individuals

• Need security in learning systems

• Misuse AI
• Misuse AI to attack other systems

• Find vulnerabilities in other systems

• Target attacks

• Devise attacks

• Need security in other systems

AI and Security: AI in the presence of attacker

• Attack AI:
• Cause learning system to not produce intended/correct results

• Cause learning system to produce targeted outcome designed by attacker

• Learn sensitive information about individuals

• Need security in learning systems

• Misuse AI
• Misuse AI to attack other systems

• Find vulnerabilities in other systems

• Target attacks

• Devise attacks

• Need security in other systems

Deep Learning Systems Are Easily Fooled

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. Intriguing properties of neural
networks. ICLR 2014.

ostrich

Adversarial examples fooling autonomous vehicles

Misclassified as
Speed Limit 75

Misclassified as
Speed Limit 60

Misclassified as
Speed Limit 75

Adversarial Examples in Physical World
robust against viewpoint changes

Subtle Perturbations
Robust Physical-World Attacks on Machine Learning Models [EEFKLPRS, 2017]

Camouflage Perturbations

Robust Physical-World Attacks on Machine Learning Models [EEFKLPRS, 2017]

Adversarial Examples in Physical World
robust against viewpoint changes

Adversarial Examples Prevalent in Deep Learning Systems

• Most existing work on adversarial examples:
• Image classification task

• Target model is known

• Our investigation on adversarial examples:

Blackbox
Attacks

Weaker Threat Models
(Target model is unknown)

Generative
Models

Deep
Reinforcement

Learning

Image
Captioning/

Image-to-code

Other tasks and model classes

Generative models

● VAE-like models (VAE, VAE-GAN) use an intermediate latent
representation

● An encoder: maps a high-dimensional input into lower-
dimensional latent representation z.

● A decoder: maps the latent representation back to a high-
dimensional reconstruction.

Adversarial Examples in Generative Models

● An example attack scenario:
● Generative model used as a compression scheme

● Attacker’s goal: for the decompressor to reconstruct a
different image from the one that the compressor sees.

Adversarial Examples for VAE-GAN in MNIST
Target Image

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models

Original images Reconstruction of original images

Adversarial examples Reconstruction of adversarial examples

Adversarial Examples for VAE-GAN in SVHN
Target Image

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models

Original images Reconstruction of original images

Adversarial examples Reconstruction of adversarial examples

Target Image

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models

Original images Reconstruction of original images

Adversarial examples Reconstruction of adversarial examples

Adversarial Examples for VAE-GAN in SVHN

Deep Reinforcement Learning Agent (A3C) Playing Pong

Original Frames

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].

Adversarial Examples on A3C Agent on Pong

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop, 2017]

No. of steps

Sc
o

re

Blindly injecting adversarial perturbations
every 10 frames.

No. of steps No. of steps

Sc
o

re

Sc
o

re

Attacks Guided by Value Function

Injecting adversarial perturbations
guided by the value function.

Agent in Action

Original Frames With FGSM perturbations
(𝜖 = 0.005) inject in
every frame

With FGSM perturbations
(𝜖 = 0.005) inject based
on value function

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].

Adversarial Examples Prevalent in Deep Learning Systems

• Most existing work on adversarial examples:
• Image classification task

• Target model is known

• Our investigation on adversarial examples:

Blackbox
Attacks

Weaker Threat Models
(Target model is unknown)

Generative
Models

Deep
Reinforcement

Learning

Image
Captioning/

Image-to-code

Other tasks and model classes

Numerous Defenses Proposed

• Input processing
• Gaussian blur, median blur

• Quantization

• Adversary re-training
• Re-train with generated adversarial examples

• Detecting adversarial examples
• Detecting anomalous high-frequency patterns in input

• Detecting anomalous activations

• Detecting low confidence output

Numerous Defenses Proposed

Ensemble

Normalization

Distributional detection

PCA detection

Secondary classification

Stochastic

Generative

Training process

Architecture

Retrain

Pre-process input

Detection

Prevention

No Sufficient Defense Today

• Strong, adaptive attacker can easily evade today’s defenses

• Ensemble of weak defenses does not (by default) lead to strong defense
• Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song [WOOT 2017]

Adversarial Machine Learning
• Adversarial machine learning:

• Learning in the presence of adversaries

• Inference time: adversarial example fools learning system
• Evasion attacks

• Evade malware detection; fraud detection

• Training time:
• Attacker poisons training dataset (e.g., poison labels) to fool learning system to learn wrong model

• Poisoning attacks: e.g., Microsoft’s Tay twitter chatbot

• Attacker selectively shows learner training data points (even with correct labels) to fool learning
system to learn wrong model

• Data poisoning is particularly challenging with crowd-sourcing & insider attack

• Difficult to detect when the model has been poisoned

• Adversarial machine learning particularly important for security critical system

Security will be one of the biggest challenges in Deploying AI

Security of Learning Systems

• Software level

• Learning level

• Distributed level

Challenges for Security at Software Level

• No software vulnerabilities (e.g., buffer overflows & access control issues)

• Attacker can take control over learning systems through exploiting software
vulnerabilities

Challenges for Security at Software Level

• No software vulnerabilities (e.g., buffer overflows & access control issues)

• Existing software security/formal verification techniques apply

Proactive Defense:
Bug Finding

Proactive Defense:
Secure by Construction

Reactive Defense

Automatic worm detection
& signature/patch generation

Automatic malware
detection & analysis

Progression of my approach to software security over last 20 years

Security of Learning Systems

• Software level

• Learning level

• Distributed level

Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events

Regression Testing vs. Security Testing
in Traditional Software System

Regression Testing Security Testing

Operation
Run program on normal
inputs

Run program on
abnormal/adversarial inputs

Goal
Prevent normal users from
encountering errors

Prevent attackers from
finding exploitable errors

Regression Testing vs. Security Testing
in Learning System

Regression Testing Security Testing

Training
Train on noisy training data:
Estimate resiliency against
noisy training inputs

Train on poisoned training
data: Estimate resiliency
against poisoned training
inputs

Testing
Test on normal inputs:
Estimate generalization error

Test on
abnormal/adversarial inputs:
Estimate resiliency against
adversarial inputs

Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events
• Regression testing vs. security testing

• Reason about complex, non-symbolic programs

Decades of Work on Reasoning about Symbolic Programs

• Symbolic programs:
• E.g., OS, File system, Compiler, web application, mobile application

• Semantics defined by logic

• Decades of techniques & tools developed for logic/symbolic reasoning
• Theorem provers, SMT solvers

• Abstract interpretation

Era of Formally Verified Systems

IronClad/IronFleet

FSCQ CertiKOS

EasyCrypt CompCert

miTLS/Everest

Verified: Micro-kernel, OS, File system, Compiler, Security protocols, Distributed systems

Powerful Formal Verification Tools + Dedicated Teams

Coq

Why3

Z3

No Sufficient Tools to Reason about Non-Symbolic Programs

• Symbolic programs:
• Semantics defined by logic

• Decades of techniques & tools developed for logic/symbolic reasoning
• Theorem provers, SMT solvers

• Abstract interpretation

• Non-symbolic programs:
• No precisely specified properties & goals

• No good understanding of how learning system works

• Traditional symbolic reasoning techniques do not apply

Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events
• Regression testing vs. security testing

• Reason about complex, non-symbolic programs

• Design new architectures & approaches with stronger generalization &
security guarantees

Example Applications:

• End-user programming

• Performance optimization of code

• Virtual assistant

Neural Program Synthesis

ProgramIntent
Program

Synthesizer

Can we teach computers to write code?

“Software is eating the world” --- az16

Program synthesis can automate this &
democratize idea realization

Neural Program Synthesis
Trainin

g data

452

345

123
234

357

Input

Output797

612

367

979

Neural Program Synthesis

Neural Program

Architecture

Learned

neural

program

Test input Test output

120

Trainin

g data

452

345

123
234

357

Input

Output797

612

367

979

50

70

Neural Program Architectures
Neural Turing Machine

(Graves et al)

Neural Programmer (Neelankatan et al)

Neural Programmer-Interpreter (Reed et al)

Neural GPU (Kaiser et al)

Stack Recurrent Nets (Joulin et al)
Learning Simple Algorithms from

Examples (Zaremba et al)

Differentiable Neural

Computer (Graves et al)

Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path

Nov 2014 May 2015 Dec 2015 May 2016 June 2016 Oct 2016

Reinforcement Learning

Neural Turing Machines

(Zaremba et al)

Challenge 1: Generalization

Trainin

g data

452

345

123
234

357

Input

Output797

612

367

979

length = 5

length = 3

Neural Program

Architecture

Learned

neural

program

Test input Test output

5432134216

24320

58536

Challenge 2: No Proof of Generalization

✔

Trainin

g data

452

345

123
234

357

Input

Output797

612

367

979

length = 3

length = 5

Neural Program

Architecture

Learned

neural

program

Test input Test output

34216

24320

Our Approach: Introduce Recursion

Learn recursive neural programs

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion
[ICLR 2017, Best Paper Award]

Recursion

Quicksort

• Fundamental concept in Computer Science and Math
• Solve whole problem by reducing it to smaller subproblems (reduction rules)
• Base cases (smallest subproblems) are easier to reason about

• Proof of Generalization:
• Recursion enables provable guarantees about neural programs
• Prove perfect generalization of a learned recursive program via a verification procedure

• Explicitly testing on all possible base cases and reduction rules (Verification set)

• Learn & generalize faster as well
• Trained on same data, non-recursive programs do not generalize well

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion [ICLR 2017, Best Paper Award]

Our Approach: Making Neural Programming Architectures Generalize via Recursion

Accuracy on Random Inputs for Quicksort

Importance of Recursion in Neural Program Architectures

● We introduce recursion, for the first time, into neural program architectures,
and learn recursive neural programs

57

● We address two main challenges using

recursion:

○ Generalization to more complex inputs

○ Proof of generalization

Lessons

• Program architecture impacts generalization & provability

• Recursive, modular neural architectures are easier to reason, prove, generalize

• Explore new architectures and approaches enabling strong generalization & security
properties for broader tasks

Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events

• Reason about complex, non-symbolic programs

• Design new architectures & approaches with stronger generalization &
security guarantees

• Reason about how to compose components

Compositional Reasoning

• Building large, complex systems require compositional reasoning
• Each component provides abstraction

• E.g., pre/post conditions

• Hierarchical, compositional reasoning proves properties of whole system

• How to do abstraction, compositional reasoning for non-symbolic programs?

Security of Learning Systems

• Software level

• Learning level
• Evaluate system under adversarial events, not just normal events

• Reason about complex, non-symbolic programs

• Design new architectures & approaches with stronger generalization & security guarantees

• Reason about how to compose components

• Distributed level
• Each agent makes local decisions; how to make good local decisions achieve good global decision?

AI and Security: AI in the presence of attacker

• Attack AI
• Integrity:

• Cause learning system to not produce intended/correct results
• Cause learning system to produce targeted outcome designed by attacker

• Confidentiality:
• Learn sensitive information about individuals

• Need security in learning systems

• Misuse AI
• Misuse AI to attack other systems

• Find vulnerabilities in other systems
• Target attacks
• Devise attacks

• Need security in other systems

Misused AI can make attacks more effective

Deep Learning Empowered
Bug Finding

Deep Learning Empowered
Phishing Attacks

Misused AI for large-scale, automated, targeted manipulation

Future of AI and Security

How to better understand what security means for AI, learning systems?

How to detect when a learning system has been fooled/compromised?

How to build better resilient systems with stronger guarantees?

How to build privacy-preserving learning systems?

Security will be one of the biggest challenges in Deploying AI

