

Reinforcement Learning for Mixed-Autonomy Traffic

Cathy Wu, Eugene Vinitsky, Aboudy Kreidieh, Alexandre Bayen

> FORCES Meeting UC Berkeley 2017-08-23

What happens **between 0% and 100%** penetration of autonomous vehicles?

Problem statement

How can a team of autonomous vehicles in mixed-autonomy traffic improve traffic?

Problem setup

Linear dynamics:
$$\ddot{\tilde{x}}_i = k_p(\tilde{x}_{i-1} - \tilde{x}_i) + k_d(\dot{\tilde{x}}_{i-1} - \dot{\tilde{x}}_i) - k_v(\dot{\tilde{x}}_i)$$

Robot control: $\ddot{\tilde{x}}_i = k_{p_r}(\tilde{x}_{i-1} - \tilde{x}_i) + k_{d_r}(\dot{\tilde{x}}_{i-1} - \dot{\tilde{x}}_i) - k_{v_r}(\dot{\tilde{x}}_i)$ [Cui, et al., IV, 2017; Wu et al., In submission, 2017]

Alternatively: $\ddot{\tilde{x}}_i = f(\tilde{x}_{i-1}, \tilde{x}_i, \tilde{x}_{i-1}, \dot{\tilde{x}}_i)$

[Wu et al., In submission, 2017]

Image credit: Florian Brown-Altvater

Reinforcement learning

Goal: learn policy $\pi: S \to A$ to maximize reward

Example:

max $-(\text{total fuel consumption}) + -\lambda(\text{total travel time to destination})$ s.t. no collisions

[Sutton98]

Page 5

Single-lane ring road 1 RL, 21 human

Pas

Reward function: deviation from target velocity

Velocity Improvement!

Tailgating speedup

Multi-lane Platooning

MDPs with symmetry

Challenge: poor sample efficiency due to combinatorial explosion in state and action spaces.

MDPs with symmetry

Proposed canonical projection mapping: Selective sorting of the state space

Canonical Projection Result

CYBER-PHYSICAL SYSTEMS

Multi-lane stabilization

Figure 8 (1 RL)

C I

3

1

Figure 8 (all RL)

•

- -

.+

Mixed-Autonomous Comparison

REB-PHYSICAL SYSTEMS

Current work and opportunities

Control ←→ reinforcement learning

- * Learning minimal controllers
- * Proving optimality for learned controllers

Advancing reinforcement learning research

- * Scaling up multi-agent learning algorithms
- Representation learning for sample efficient learning in MDPs with symmetr and locality

Advancing intelligent transportation research

- * Supporting large-scale networks
- * Learning for mixed-control (intersections, speed limits, AVs).

Learning-traffic team

Graduate researchers

Cathy Wu Team lead, EECS

Eugene Vinitsky MechE

Aboudy Kreidieh CEE

TEND

PI

Alex Bayen EECS/CEE

Undergraduate researchers

Leah Dickstein EECS

Kanaad Parvate EECS

Acknowledgements: Joseph Wu

