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1. Network interdiction models: Vulnerability assessment of 
electricity networks, and design of protection strategies 
against disruptions (with D. Shelar, S. Zonouz, P. Sun)

2. Network Security games: Optimal monitoring of water 
networks to achieve detection of strategic failures using small 
# of sensors (with M. Dahan, L. Sela, W. Abbas, X. Koutsoukos).               

3. Inspection games: Evaluating incentives of distribution utilities 
to employ analytics tools and inspection technologies to limit 
losses, including theft (with A. Sethi, G. Schwartz, S. Sastry)

Focus: Three problems in CPS security

1/25/17

Network 
constraints

Information
asymmetry
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Sequential interaction between players: 
∗ Bilevel (maximin), Stackelberg, and multi-level optimization models
(+) Outer and inner levels may have different objectives; network 
constraints can be imposed; allow both integer and continuous variables
(+) Computational approaches: Benders decomposition and KKT-based 
reformulation to single level MILP (scalable to medium-sized problems)
(+) Useful for vulnerability assessment, typically for physical failures (e.g., 
papers by D. Bienstock, S. Wright, R. Baldick)
(-) Limited emphasis on the structural insights on player strategies 
(-) Adversary model is conservative and defender assumed to have 
perfect observability of the attack (e.g., line / generator disconnects)
(-) Cyber aspects are typically not included in these models. 

Model 1: Network interdiction (literature)

1/25/17
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Model 1: Attacks to Dynamic Line Ratings (DLRs)

1/25/17

Bilevel problem
∗ Leader (Attacker): Compromises DLRs
∗ Follower (Defender): Economic dispatch 

problem for the compromised system

∗ Problem: Find optimal attack plan to 
maximinimize line rating violations

∗ Solution approach: Apply KKT optimality conditions for the inner 
problem, and reformulate complementarity constraints

∗ Use branch-and bound techniques to solve the resulting MILP
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1: Underlying CPS security problem

1/25/17

Control systems security viewpoint
(Teixeira, Johansson, Sandberg ‘15)

Software systems security viewpoint
?
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Attacker strategy (largely) 
exhibits a bang-bangpolicy.

1: Optimal attack strategy

1/25/17

3-bus system

True line capacity ratings and 
demand over 24 hour horizon 

Attacker’s gain and operator’s cost
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1: Semantics-aware ``optimal’’ memory attack

1/25/17

Post-attack power system state

Potential mitigations
• Fine-grained data isolation mechanisms
• Controller output verification
• N-version programming
• Attack-aware distributed control

Power	System	

…	 …	
sensors	 actuators	

Cyber	

Physical	

Controller	So/ware	

measurements	 control	commands	

control	loop	
memory	control		
data	corrup6on	

Adversary-op6mal	value	calcula6on	for	
modifiable	parameters	

Control-sensi6ve	parameters	(memory	values)	
that	can	be	detected	and	modified	by	the	a>ack	

Run6me	a>ack:	control-sensi6ve	data	
loca6on	and	corrup6on	

Offline	controller	soDware	analysis	and	
memory	pa>ern	extrac6on	

Malicious	values	for		
control-sensi6ve	parameters	
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Model 2: Network security games (literature)

1/25/17

Simultaneous interaction between players: 
∗ Attacker targets one or more network components; defender chooses a 

protection strategy. Both players subject to resource constraints
∗ Typically formulated as  [Strategically equivalent / non-] zero-sum game
(i) Theory of zero-sum games is well-developed: 
∗ Computational approaches to solve small-to-mid sized problems 
∗ Modeling flexibility: CPS Network structure, budget constraints

(ii) Theory of dynamic games of incomplete info: Aumann, Maschler, Renault,…

Key issues (more in Demos’s talk):
(?) How to compute equilibria in scalable manner for large-scale CPS 
(?) How to characterize the equilibrium structure and what are the practical 
implications of player strategies, e.g., monitoring, protection, investment 
Let us consider the problem of water network sensing under strategic attacks.
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2. Sensing Model

! Undirected graph G = (N ,L).
! N : Set of nodes.
! L: Set of links.

! For every node i ∈ N , Ci ⊆ L represents the subset of links monitored
by a sensor placed in node i . For example, Ci may represent:

! The links that are within a certain distance from i .
! The adjacent links of node i .
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2. Sensor Placement

! For a given sensor placement S ⊆ N , the subset of links that are
monitored by at least one sensor in S is given by:

CS :=
⋃

i∈S

Ci

! Example: For one-hop sensing, a sensor node can detect only adjacent
edges:
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! S = {4, 5}
! C4 = {ℓ4, ℓ7, ℓ6}, C5 = {ℓ3, ℓ6, ℓ8}
! CS = {ℓ3, ℓ4, ℓ6, ℓ7, ℓ8}
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! For a given sensor placement S ⊆ N , the subset of links that are
monitored by at least one sensor in S is given by:
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⋃
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2. Game

� := h{1, 2}, (A1,A2), (u1, u2)i

I Player 1 (Defender) chooses a sensor placement S 2 A1.

A1 =
�
S ✓ N

�� |S |  b1

 

I Player 2 (Attacker) chooses a subset of links L 2 A2 to target:

A2 =
�
L ✓ L

�� |L|  b2

 

Resource limitations:

I
b1: maximum number of simultaneously deployable sensors.

I
b2: maximum number of simultaneous link failures.

1/25/17
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2. Game

Γ := ⟨{1, 2}, (A1,A2), (u1, u2)⟩
! Player 1 (Defender) payoff: number of detected failure events

u1(S , L) := |CS ∩ L|

! Player 2 (Attacker) payoff: number of undetected failure events

u2(S , L) := |L|− |CS ∩ L|

! Mixed-extension: for (σ1,σ2) ∈ ∆(A1)×∆(A2):

U1(σ
1,σ2) = E[u1(S , L)], U2(σ

1,σ2) = E[u2(S , L)]

! SΓ is the set of Nash Equilibria.
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2. Computation of Nash Equilibria

Challenge: How to compute Nash equilibria of this game in a scalable
manner?

! Option 1: Strategic equivalence to a zero-sum game:
! SΓ can be obtained by solving:

(LP1) max z

s.t. Ũ1(σ1, L) ≥ z , ∀L ∈ A2

σ1 ∈ ∆(A1)

(LP2) max z ′

s.t. Ũ2(S ,σ2) ≥ z ′ ∀S ∈ A1

σ2 ∈ ∆(A2)

! Issue: If |N | = |L| ≈ 1000 and b1 = b2 = 10, then the number of
variables and constraints in both LPs is 2.66 · 1023!!!

! Option 2: Computing approximate Nash equilibria using solutions of two
classical combinatorial optimization problems.

1/25/17
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s.t. Ũ1(σ1, L) ≥ z , ∀L ∈ A2

σ1 ∈ ∆(A1)

(LP2) max z ′
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2. Minimum Set Cover

Defender minimizes the number of sensors needed to monitor all the links:

(MSC) minimize
S✓N

|S |

subject to
[

i2S

C
i

= L (full coverage)
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Example: For one-hop sensing:

I {1, 3, 5, 7} is a sensor placement over an MSC.

I
n

⇤: size of MSC.

1/25/17
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2. Maximum Set Packing

Attacker maximizes the number of link failures such that a sensor placed
in any node cannot detect more than one failure:

(MSP) maximize
L✓L

|L|

subject to |C
i

\ L|  1, 8i 2 N (at most one detection)
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Example: For one-hop sensing:

I {`1, `5, `6, `10} is the attack of an MSP.

I
m

⇤: size of MSP. I Weak Duality: m⇤  n

⇤

1/25/17
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2. Resource Limitations

Case of Interest

The network is su�ciently large relative to players’ resources, in the
sense that Player 1 (resp. Player 2) has less resources than the size of the
MSC (resp. the MSP),

b1 < n

⇤, b2 < m

⇤
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I MSC: {1, 3, 5, 7}
I MSP: {`1, `5, `6, `10}
I Let b1 < 4 and b2 < 4

1/25/17
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2. Main Theorem

Theorem
In the case where b1 < n∗ and b2 < m∗, we have:

! In any equilibrium (σ1∗,σ2∗) ∈ SΓ, the players’ payoffs are constant and
can be bounded as follows:

b1b2
n∗

≤ U1(σ
1∗,σ2∗) ≤ b1b2

m∗

b2

(
1− b1

m∗

)
≤ U2(σ

1∗,σ2∗) ≤ b2

(
1− b1

n∗

)

! In any equilibrium σ∗ ∈ SΓ, the expected detection rate is constant and
bounded as follows:

b1
n∗

≤ Eσ∗

[
|CS ∩ L|

|L|

]
≤ b1

m∗
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2. Main Theorem

Theorem
In the case where b1 < n∗ and b2 < m∗, we have:

! In any equilibrium (σ1∗,σ2∗) ∈ SΓ, the players’ payoffs are constant and
can be bounded as follows:

b1b2
n∗

≤ U1(σ
1∗,σ2∗) ≤ b1b2

m∗

b2

(
1− b1

m∗

)
≤ U2(σ

1∗,σ2∗) ≤ b2

(
1− b1

n∗

)

! In any equilibrium σ∗ ∈ SΓ, the expected detection rate is constant and
bounded as follows:

b1
n∗

≤ Eσ∗

[
|CS ∩ L|

|L|

]
≤ b1
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2. Number of Sensors

(Q) How many sensors are required to limit the losses in the network?

I Detection rate in equilibrium:

b1

n

⇤  E�⇤


|C

S

\ L|
|L|

�
 b1

m

⇤

I If ↵ is the target detection rate:
I Necessary condition: b1 = d↵m⇤e
I Su�cient condition: b1 = d↵n⇤e

1/25/17
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2. MSC-MSP Based Strategies

Theorem

I
For any MSC S

min

and any MSP L

max

, (�S

min

,�L

max

) defined as follows is

an ✏�NE, where ✏ = b1b2
n

⇤�m

⇤

n

⇤
m

⇤ .

Example:
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I
b1 = b2 = 2

I �1⇤

{1,3} =
1

2
, �1⇤

{5,7} =
1

2

I �2⇤

{`1,`5} =
1

2
, �2⇤

{`6,`10} =
1

2
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2. Examples

Table: Network data

Network
Length No. of No. of

m⇤ n⇤
Running time [s] Optimality

[km] pipes nodes (MSP) (MSC) Gap

Net1 37.56 168 126 7 7 0.05 0.11 0%
Net2 91.29 366 269 15 15 0.01 0.03 0%
Net3 96.58 496 420 18 19 0.02 0.05 5.3%
Net4 137.05 603 481 28 28 0.09 0.08 0%
Net5 123.20 644 543 24 24 0.08 0.06 0%
Net6 166.60 907 791 31 31 0.03 0.08 0%
Net7 153.30 940 778 28 30 0.06 0.08 6.7%
Net8 152.25 1124 811 18 19 0.39 0.41 5.3%
Net9 260.24 1156 959 62 64 0.03 0.05 3.1%
Net10 247.34 1614 1325 45 45 0.14 0.22 0%
Net11 779.86 14965 16000 119 121 4.34 8.36 1.7%
Net12 1,844.04 12523 14822 352 361 0.77 4.06 2.5%
Net13 476.67 24681 25484 50 52 58.89 68.67 3.8%

I MSC/MSP-based strategies provide solutions that are accurate and
scalable.

I Results are still applicable if MSC and MSP are computed with
approximation algorithms.

1/25/17



Page 21

3. Diagnostics for Energy Diversion Attacks

Substation

Transmission lines

Generation

Control Central

Distribution

lines

Typical communication

New communication

requirenments

Modesto irrigation district: energy diversion data

Distribution utility: 
∗ Fighting theft: identify fraudulent 

consumers
∗ Smart meter data: statistical detection 

tools to fight theft and impose fines
∗ Choose investment in theft prevention

Consumers: 
∗ Compromise meters and inject false data
∗ New ways to steal and evade detection!  
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∗ Inspection games are a class of incomplete information games that 
account for illegal actions by a strategic inspectee who wants to evade 
detection by an inspector

∗ Distribution utility (inspector): 
∗ faces two “types” of consumers: genuine and fraudulent
∗ uses an intrusion detection system (IDS) for monitoring 
∗ IDS is a classifier with tradeoff between detection and false alarm rates

∗ Fraudulent consumers (inspectee): 
∗ Manipulate meter readings to under-report actual consumption

Two questions: 
∗ How should the utility evaluate the benefit of IDS? 
∗ Should the utility use the fixed configuration or optimally tune an IDS?

Model 3: Energy theft by fraudulent customers

1/25/17
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Bayesian inspection game: models incomplete info for utility in both
(a) type of customer: fraudulent or genuine
(b) average level of theft: high or low

∗ We study the tradeoff in terms of gain from fraud investigations 
(and deterrence) versus cost of investigation and false alarms

∗ We evaluate the value of IDS with incomplete information on 
both type of customer and level of theft and analyze its 
properties.
∗ Value of IDS: Monetary benefit in using a tuned IDS relative to a fixed 

configuration (or even no IDS) case
∗ Value of information on theft level: Additional benefit if an accurate 

estimate of the average theft level is used to configure IDS 

Model 3: Our contribution

1/25/17
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∗ Network interdiction model
(+) Computational tools for bilevel problems with network constraints
(-) Do not capture information asymmetries and repeated interactions  

∗ Network security games 
(+) Computational tools for (non) zero-sum games on networks
(-) Interpretation of equilibrium (and off-equilibrium) strategies

∗ Inspection games 
(+) Relevant for monitoring and enforcement problems 
(+) Capture the present of asymmetric information in these problems 
(-) Do not [naturally] capture the underlying network structure 

* Introduction of info. asymmetry & CPS dynamics requires care!
∗ Computational tractability
∗ Interpretation of equilibria

Summary: Game-theoretic models for CPS security

1/25/17


