

Towards a Resilient and Secure Air Transportation Infrastructure

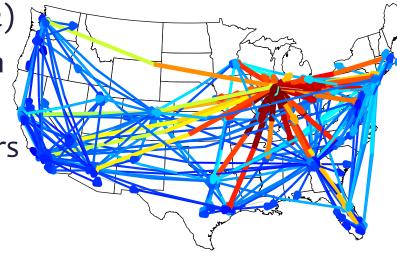
Hamsa Balakrishnan

(with Karthik Gopalakrishnan & Sandeep Badrinath) Massachusetts Institute of Technology

Resilient air transportation

- Delays propagate through the system
 - * A delayed flight delays the aircraft, the crew, and the passengers
 - Large number of shared (airport and airspace) resources increase delay propagation
 - Domestic flight delays cost ~\$30-40B annually

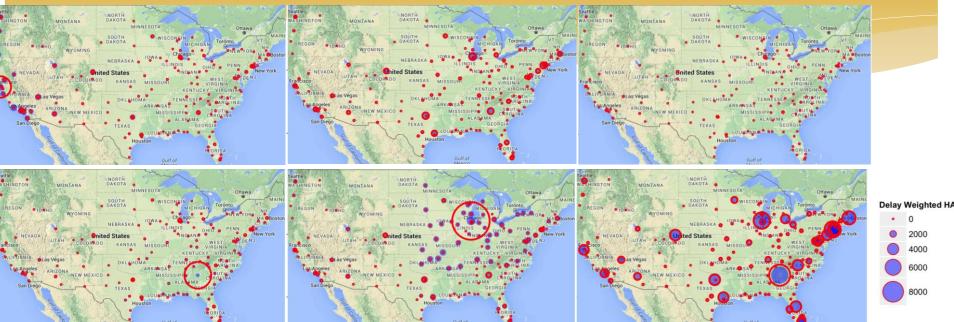
Flight delays by cause, 2013


- On Time: 78.34%
 Air Carrier Delay: 5.55%
 Weather Delay: 0.58%
 National Aviation System Delay: 6.04%
 Security Delay: 0.04%
 Aircraft Arriving Late: 7.73%
 Cancelled: 1.51%
- Diverted: 0.22%

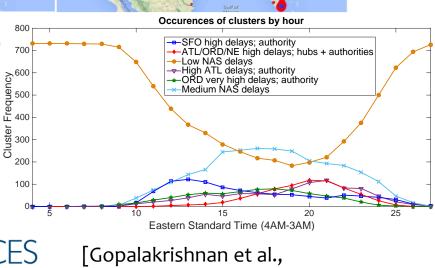
Air traffic delay networks

- * Weighted, directed, labeled graphs
- Network built from Bureau of Transportation Statistics data (2011-12)
- Nodes: Airports; edges: OD pairs with more than 5 flights/day on average
- * Weights: Departure delays on OD pairs
- Network with 158 nodes and 1,107 edges
- * Characterizing networks using edge weights requires $\mathcal{O}(n^2)$ parameters

[Rebollo & Balakrishnan 2014]


Network centrality metrics for directed graphs

- * Hub and authority scores for each node
- Strong hubs point to strong authorities ← → Strong authorities are pointed to by strong hubs
- * Extension of eigenvector centrality to directed graphs
- * Characterizing a directed network by hub and authority scores, and node out- and in-degrees: $\mathcal{O}(n)$ parameters
 - * Cluster networks using k-means or k-medoids algorithms
 - * Silhouette plots to evaluate number of clusters



[Gopalakrishnan et al., submitted to ACC 2016]

Clustering delay-weighted hub and authority scores

- * Hub scores: O; Authority scores:
- Clustering of 731 x 24 data points (every hour for 2 years)
- Likelihood of "delay state" (discrete mode) occurrence varies by time-of-day

2/28/2017

submitted to ACC 2016]

Modeling resilience: Delay propagation

 $\bar{x}(t+1) = \tilde{A}_{i(t)}\bar{x}(t)$, where i(t) is the discrete mode at t.

* Conditions for system stability (i.e., attenuation of delays)

* Hybrid system: Switching between discrete delay modes

Hybrid systems model with stochastic transitions between delay states

Securing the air transportation system

- * Clearly, a rapidly growing concern worldwide...
 - * Airlines step up efforts to tackle cyber security risks -Reuters, 10/26/15

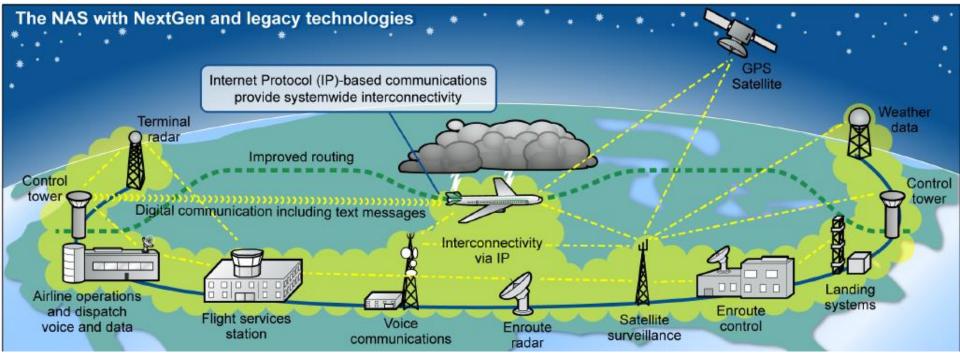
GAO	United States Government Accountability Office Report to Congressional Requesters	GAO	United States Government Accountability Office Report to Congressional Requesters	GAO	United States Government Accountability Office Report to Congressional Requesters
January 2015	INFORMATION SECURITY FAA Needs to Address Weaknesses in Air Traffic Control Systems	April 2015	AIR TRAFFIC CONTROL FAA Needs a More Comprehensive Approach to Address Cybersecurity As Agency Transitions to NextGen	July 2015	NEXT GENERATION AIR TRANSPORTATION SYSTEM Improved Risk Analysis Could Strengthen FAA's Global Interoperability Efforts
a transmission and the					

* Cyber insurance premiums rocket after high-profile attacks -Reuters, 10/12/15

The NextGen transformation

★ Ground-based systems (radars, point-to-point communications)
 → satellite-based navigation + IP-based communications

The National Airspace System (NAS) without NextGen technologies Weather Terminal data radar **Baseline** routing Control Control tower tower Voice communication $\Box \Box$ Landing Airline operations Enroute systems and dispatch Flight services Ground based Voice control voice and data station Enroute navigation communications radar (legacy technology) FAA ground-base telecommunication lines provide point-to-point connectivity



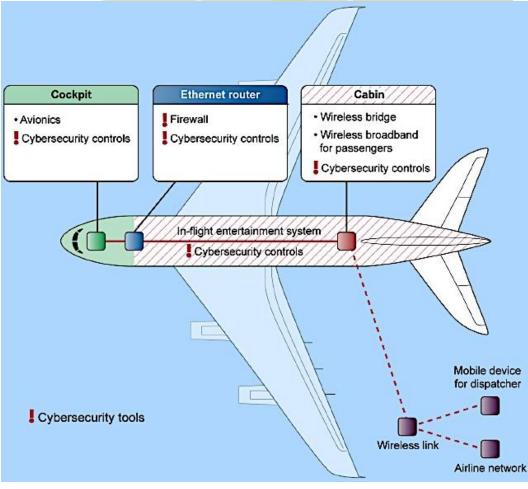
[GAO-15-370, 2015]

2/28/2017

The NextGen transformation

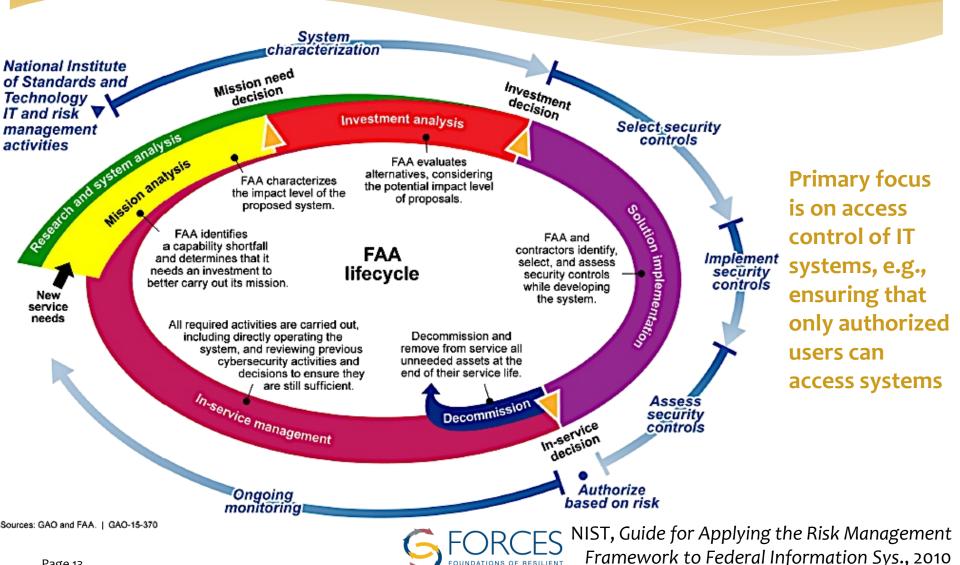
★ Ground-based systems (radars, point-to-point communications)
 → satellite-based navigation + IP-based communications

[GAO-15-370, 2015]


Many NextGen programs have security implications

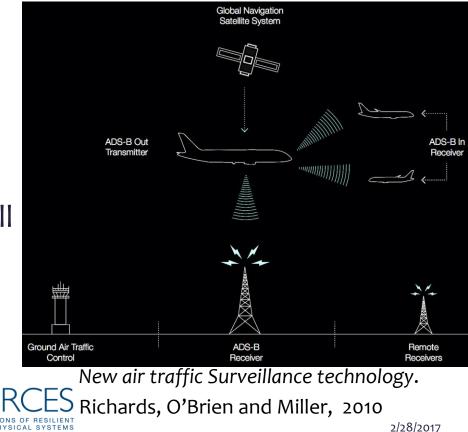
- * Surveillance & Broadcast Services Subsystem (SBSS)
 - * e.g. ADS-B
- * System Wide Information Management (SWIM)
- * Collaborative Air Traffic Management Technologies (CATMT)
- * Common Support Services Weather (CSS-Wx)
- * Data Communications (DataComm)
- * NAS Voice Switch (NVS)
 - Digital communications

And then there is the aircraft itself...


- Traditionally, aircraft G&C systems are isolated from other systems
- Change is on its way
 - Electronic Flight Bags
 - Proliferation of handheld devices
 - Firewall between cockpit and cabin systems
 - "Special Conditions" for Boeing 787 and Airbus A350
- Access control

[GAO-15-370, 2015]

FAA has adopted NIST guidelines


OUNDATIONS OF RESILIENT

CYBER-PHYSICAL SYSTEMS

2/28/2017

Secure ATC

- * Focus on Surveillance and Broadcast Services Subsystem (SBSS)
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - Satellite-based navigation
- Broadcasts of position, velocity, intent, flight number, etc.
- * Sent through 1090 MHz datalink
- * Not encrypted; range: >100 nmi
- Received by other aircraft as well as ground receivers
 - * ATC surveillance
 - * Collision detection & resolution
 - Efficient routing

Taxonomy of attacks

* Parallels to other vehicular networks [e.g. Raya & Hubaux 2007]

	Attack/fault type	Impact	Ease	Mitigation mechanism	
Passive	Eavesdropping	Privacy	Н	current	
Active: DOS	Jamming 1090 MHz channel	Message deletion;	М	Adaptive ADS-B transponder	
Random	Message collisions	ATC surveillance		power [Park et al. 2014]; Robust CD&R protocols	
Active: Deception	Ghost aircraft injection	Situational awareness	Μ	Public Key Infrastructure (Certificates)	
Active: DOS	Ghost aircraft flooding	System overload	М	UAS challenge: Scalability	
Random	Surveillance uncertainty	Situational		Leverage "physical" models	
Active: Deception	Trajectory modification/ aircraft spoofing	awareness; conflict detection/resolution Geo-fencing	L	& other sys [Park et. al 2014] UAS challenge: Diversity of dynamics	

Taxonomy of attacks

* Parallels to other vehicular networks [e.g. Raya & Hubaux 2007]

	Attack/fault type	Impact	Ease	Mitigation mechanism		
Passive	Eavesdropping	Privacy	Н	current		
Active: DOS	Jamming 1090 MHz channel		М	Adaptive ADS-B transponder		
Random	Message collisions	NBOOX NEWS MAY 3 2014, 9:14 AM ET Spy Plane Fries Air Traffic Control				
Active: Deception?	Ghost aircraft injection					
Active: DOS	Ghost aircraft flooding					
Random	Surveillance uncertainty					
Active: Deception	Trajectory modification/	Computers, Shuts Down LAX				

NBC News, 2014