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The digital transformation for 10T data:

— Data will enter into these systems in a closed-loop
fashion through analytics, controllers, and incentives.

— Users will have incentive to obfuscate and strategically
manipulate their data.

— Companies will have to compete for consumers, and will
use data to improve their competitive edge.
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n-sided markets

* Looking forward, we wish to understand the
effects of competition, asymmetric information,
and learning in these n-sided markets.

* To start:
— With one firm: how do we learn the preferences and
behaviors of users?
— With one firm: how do we close the loop on this learning
process?
— With multiple firms: what is the effect of competition?



outline

* learning
— inverse reinforcement learning with risk-sensitive agents

* learning and control

— multi-armed bandit approaches for issuing incentives
when preferences and dynamics are unknown

* competition
— equilibria of data markets



outline

* learning
— inverse reinforcement learning with risk-sensitive agents



Learning: Inverse Risk-Sensitive RL

Can we learn plausible models of human behavior and preferences, with
theoretical foundations, by drawing on “smart” infrastructure data?
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* Humans tend to treat losses and gains differently & make decisions
based on reference points and distortions of event probabilities.
* challenge: rational, utility maximization models tend not to capture these

effects

Goal: leverage fine grained user choice data to develop (real-time) al-
gorithms for learning and designing incentives in closed loop




Uber Case Study—Losses Loom Larger than Gains

* RIDE REQUESTS # USERS OPENING THE APP # DRIVER SUPPLY
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NYC Sold-Out Concert, March 21, 2015 (credit: J. Hall et al., 2015)
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Salient Features: Loss Aversion and Risk-Sensitivity

e reference points—e.g.,

gains
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Inverse Risk-Sensitive RL

Model: To capture these salient features, we couple behavioral
models w/ coherent risk metrics in a MDP model.

e.g., short-fall risk: compare to outside option

V(Y)=sup{m e R| E[u(Y —m)| > up}

Learning: (gradient-based inverse RL) we
learn the parameters of the value function,
learning process, and acceptance level

Convergence: assuming a Q-learning
process, we derive contraction map
argument for Q and its derivative w.r.t.
parameters

Application: classical gridworld, Uber data
(passenger’s view), and NY taxi data (in
progress)
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* learning and control

— multi-armed bandit approaches for issuing incentives
when preferences and dynamics are unknown
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Learning & Control: Preference Dependent Incentives

* Preferences evolve over time & depend on incentives offered
* Multi-Armed Bandits (MAB): assume preferences evolve according to a Markov
process with a different transition kernel associated with each arm

Challenges:

* Assuming one type of agent, the problem is still challenging because the arms
are dependent.

* With multiple types, the problem is combinatorial.

Exploration may lead to volatility in incentive which can cause agents to opt out.

Approach:

! * Introduce risk-metrics (MV, CV@R, & other

coherent risk measures) metricize volatility
g h j * Provide usual regret bounds for UCB-type
@ 0. K \ 9.—|— algorithms (depends on duration an arm is
! ! selected and size of type space: O(log(n))
single type and O(M3Nlog(n)), M=#users,

f@}\ N=#resources)

- M g+ eplo i i
, _ . ploit dependencies to reduce complexity.
@ o 5 6
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Living Lab: Smart Parking & Targeted Ads/ Incentives

GDOT currently:

one sample per year of
occupancy levels

* targetsincentives and
performance-based pricing in
pre-defined, static

\ neighborhoods

/This leads to poor performance
and unintended consequences
such as reduced business
district vitality and increased

Kcongestion

* sets prices based on data from

\

/
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Seattle Department of Transportation
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Living Lab: Smart Parking & Targeted Ads/ Incentives

- ~

Create experiments in Seattle to target ads and incentives to locations
with similar characteristics (e.g., demand and business type).

"

~ )

Gaussian Mixture Model to
identify locations with
similar demand

Target ads (e.g., locations of typically B
available parking, off-street options,
etc.) & incentives (e.g., bus passes,

\_ coupons to local businesses) y,

Working with SDOT
team & Business
Improvement Areas




motivation

* Deep learning can achieve great performance in
control...




motivation

e ...even when there are known sensor failures...




motivation

* ...and there’s recent theoretical work towards proving
their optimality.

— Neural networks can express a very, very, very large class of
functions. [Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein
2017] [Zhang, Bengio, Hardt, Recht, Vinyals 2017]

— All local optima are global optima under some positive
homogeneity assumptions. [Haeffele, Vidal 2015]

— In deep residual networks, under certain assumptions, when
the network is deep and wide enough: every stationary point
is a global optimum, there are no local minima, and no saddle
points. [Bartlett, Evans, Long]
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motivation

* However, sensor failures are often unknown
online.

* Suppose we have a set of experts {eq, ¢,, ..., ex},
each trained for a different failure mode.

* How can we choose our expert online to minimize
our regret?

Joint work with Eric Mazumdar and Vicen¢ Rubies Royo. 20



problem formulation

* Our model of the world is an partially observed
Markov decision process (MDP), denoted
(S,A,Y,P,0,R, uy)-

* Each expert maps observations Y to actions A.

* If we listened to expert e; for all time, then we’d
— N
get average reward R; = lim —~Xt=o Ri(0).
— 00
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problem formulation

* The average reward of expert e;:
a8

* Since we don’t know the best expert, we will use
our expert’s suggestions to pick actions a(t) and
get rewards R(t).

* We define regret at time t:
t—1

max tR; — Z r(s)
l

s=0
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problem formulation

t—1

max tR; — z r(s)
l

s=0

* The contribution of our work is that we have the
experts control the same system.

— If we listen to expert e; at time t and expert e; at time

t + 1, thereward r(t + 1) will be influenced by e;’s
performance.

— There is lots of coupling between experts in this
formulation!

— Intuition: We commit to an expert for long enough for
these transient effects to die out.
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theoretical results

 Atiteration n listen to expert e(n) for T,, time
steps.

* Anew regret decomposition identity:

E[r(n)]

ZIET(n) [A +T0 1—0(3)] 1—a ZTR

exe’”
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theoretical results

 Atiteration n listen to expert e(n) for T,, time
steps.

* Using the upper confidence bound algorithm, with
TTL — lTO + CnJ:
Elr(n).

'/ 32log(n 2 K.\
< E g()2+1+— (Ae+—">
* ( ZKe) 3 T,
e+e Ae —
_ n
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simulation results

* [nitially...

fraction of calls

26



simulation results

e After 1250 iterations...

fraction of calls
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From Experts to Incentives

* Extension of Experts MAB to incentivizing risk-
sensitive agent:

{%e(s,a,s’) — f(irj(s,a)) (orj}(s,a,s’))/

7

e "

reward for expert principal observed reward for arm j

* NY Taxi data from 2010-
2014 (~30k drivers) New York Taxi Data: Portion of Rides per Area

* Derive a MDP model of
taxi drivers via inverse
(risk-sensitive) RL

 Learned MDP modelis
used to simulate drivers
and we design reward
functions for the
principal

* e.g., incentives to visit
areas with high-demand




outline

* competition
— equilibria of data markets

29



data markets and services

* |n our recent work, we

| $
model the data market: 9 \(
— users exchange their data =
In exchange for services - $
. . <
and incentives a
— data buyers balance their

EEle=—01H1nh
HEE

— multiple data buyers may
compete

]
statistical estimation goals S %
with the cost of providing °
Incentives 9 o

Joint work with Tyler Westenbroek.
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model

* Strategic data sources are effort-averse.

— They need to be incentivized to provide a certain quality
of data.

e Datais non-rivalrous.

* Multiple data buyers want data sources to exert
sufficient effort, but don’t want to personally pay
for it.

— The total incentives must justify the effort exerted.

— The individual incentive from data buyer j must
incentivize sharing data with j.

32



data markets summary

* We developed an game-theoretic model to
account for strategic data sources, reproducibility
of data, quality of statistical estimation, and
competition between buyers.

 In contrast to the single- .

buyer case, when we ‘9 e S—
Introduce competition j-—» @@—»- ]
between firms, many of | /$r

the desiderata of our ' - H
Incentive schemes are e

not preserved. ‘9 %{ > @@_,9]

33



Multi-sided Markets: Matching & Learning via Bandits

* Platform based firms aim to match supply to demand

* Given unknown supply and demand characteristics, we are combining machine
learning approaches for segregating (clustering) each side of the market and
matching clusters

e e.g., drivers and passengers with similar ratings is a heuristic for matching, but
how does this extend when there are multiple objectives such as distance,
hours worked, other in-place incentives, etc.

ittt ittt linteidieteletstieielits 1 aggregate
; information
bus bike :
/‘\ P . > penrdeeet
o * 7
* g :’ ........ % SELEETTH &
* & o
PG CPS(#)
' E loT )
peieeeef PTI SeS
LA o o »
YT * ranmnnnn L L *

Physical

Platform S ) T System

a //4,/_/ ........ '

4
mixed-mode T
routes

34



outline

* learning
— inverse reinforcement learning with risk-sensitive agents

* learning and control

— multi-armed bandit approaches for issuing incentives
when preferences and dynamics are unknown

* competition
— equilibria of data markets
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The Digital Transformation & New Directions

* New research directions on new market structures formed by pervasive,
disruptive technologies that serve as the impetus for the digital
transformation

* These new directions grew out of the methodologies and approaches
created by FORCES

— how learning can be done when the data is generated by strategic human
agents operating in unstructured, uncertain environments

— how competition interacts with control and estimation of cyber-physical
systems

— how agents and markets respond to uncertainty

Data Driven
Company
digital competence 9 $ %[ N :@@_n
l ] L 5 g
. e 9 ‘L l5 - 9 0090, C
digital usage A I a@ed (Corsumers
e ‘V T 1 : $++‘
l 9 / Data 3rd Panym — 'Q'_,’]
Aggregator Market Maker @
digital transformation Data Driven
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