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The digital transformation for IoT data:

– Data will enter into these systems in a closed-loop
fashion through analytics, controllers, and incentives.

– Users will have incentive to obfuscate and strategically 
manipulate their data.

– Companies will have to compete for consumers, and will 
use data to improve their competitive edge.
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𝑛-sided markets
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𝑛-sided markets

• Looking forward, we wish to understand the 
effects of competition, asymmetric information, 
and learning in these 𝑛-sided markets.

• To start:

– With one firm: how do we learn the preferences and 
behaviors of users?

– With one firm: how do we close the loop on this learning 
process?

– With multiple firms: what is the effect of competition?
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outline

• learning

– inverse reinforcement learning with risk-sensitive agents

• learning and control

– multi-armed bandit approaches for issuing incentives 
when preferences and dynamics are unknown

• competition

– equilibria of data markets
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Learning: Inverse Risk-Sensitive RL

9

• Humans tend to treat losses and gains differently & make decisions 
based on reference points and distortions of event probabilities. 

• challenge: rational, utility maximization models tend not to capture these 
effects 



Uber Case Study—Losses Loom Larger than Gains 
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Salient Features: Loss Aversion and Risk-Sensitivity
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Inverse Risk-Sensitive RL

• Model: To capture these salient features, we couple behavioral 
models w/ coherent risk metrics in a MDP model.

• e.g., short-fall risk: compare to outside option 
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• Learning: (gradient-based inverse RL) we 
learn the parameters of the value function, 
learning process, and acceptance level

• Convergence: assuming a Q-learning 
process, we derive contraction map 
argument for Q and its derivative w.r.t. 
parameters

• Application: classical gridworld, Uber data 
(passenger’s view), and NY taxi data (in 
progress)  
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Learning & Control: Preference Dependent Incentives
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• Preferences evolve over time & depend on incentives offered
• Multi-Armed Bandits (MAB): assume preferences evolve according to a Markov 

process with a different transition kernel associated with each arm

Challenges:
• Assuming one type of agent, the problem is still challenging because the arms 

are dependent.
• With multiple types, the problem is combinatorial.
• Exploration may lead to volatility in incentive which can cause agents to opt out.

Approach:
• Exploit dependencies to reduce complexity.
• Introduce risk-metrics (MV, CV@R, & other 

coherent risk measures) metricize volatility
• Provide usual regret bounds for UCB-type 

algorithms (depends on duration an arm is 
selected and size of type space: O(log(n)) 
single type and O(M3Nlog(n)), M=#users, 
N=#resources)



Living Lab: Smart Parking & Targeted Ads/ Incentives
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SDOT currently:
• sets prices based on data from

one sample per year of 
occupancy levels

• targets incentives and 
performance-based pricing in 
pre-defined, static
neighborhoods 

This leads to poor performance 
and unintended consequences 
such as reduced business 
district vitality and increased 
congestion



Living Lab: Smart Parking & Targeted Ads/ Incentives
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Gaussian Mixture Model to 
identify locations with 
similar demand

Target ads (e.g., locations of typically 
available parking, off-street options, 
etc.) & incentives (e.g., bus passes, 
coupons to local businesses)

Working with SDOT 
marketing team & Business 
Improvement Areas



motivation

• Deep learning can achieve great performance in 
control…
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motivation

• …even when there are known sensor failures…
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motivation

• …and there’s recent theoretical work towards proving 
their optimality.

– Neural networks can express a very, very, very large class of 
functions. [Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein 
2017] [Zhang, Bengio, Hardt, Recht, Vinyals 2017]

– All local optima are global optima under some positive 
homogeneity assumptions. [Haeffele, Vidal 2015]

– In deep residual networks, under certain assumptions, when 
the network is deep and wide enough: every stationary point 
is a global optimum, there are no local minima, and no saddle 
points. [Bartlett, Evans, Long]
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motivation

• However, sensor failures are often unknown
online.

• Suppose we have a set of experts {𝑒1, 𝑒2, … , 𝑒𝑁}, 
each trained for a different failure mode.

• How can we choose our expert online to minimize 
our regret?

20Joint work with Eric Mazumdar and Vicenç Rúbies Royo.



problem formulation

• Our model of the world is an partially observed 
Markov decision process (MDP), denoted 
(𝒮,𝒜,𝒴, 𝑃, 𝑂, 𝑅, 𝜇0).

• Each expert maps observations 𝒴 to actions 𝒜.

• If we listened to expert 𝑒𝑖 for all time, then we’d 

get average reward ഥ𝑅𝑖 = lim
𝑇→∞

1

𝑇
σ𝑡=0
𝑇−1𝑅𝑖 𝑡 .
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problem formulation

• The average reward of expert 𝑒𝑖:

ഥ𝑅𝑖 = lim
𝑇→∞

1

𝑇


𝑡=0

𝑇−1

𝑅𝑖 𝑡

• Since we don’t know the best expert, we will use 
our expert’s suggestions to pick actions 𝑎 𝑡 and 
get rewards 𝑅 𝑡 .

• We define regret at time 𝑡:

max
𝑖

𝑡 ഥ𝑅𝑖 −

𝑠=0

𝑡−1

𝑟 𝑠
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problem formulation

max
𝑖

𝑡 ഥ𝑅𝑖 −

𝑠=0

𝑡−1

𝑟 𝑠

• The contribution of our work is that we have the 
experts control the same system.

– If we listen to expert 𝑒𝑖 at time 𝑡 and expert 𝑒𝑗 at time 

𝑡 + 1, the reward 𝑟(𝑡 + 1) will be influenced by 𝑒𝑖’s 
performance.

– There is lots of coupling between experts in this 
formulation!

– Intuition: We commit to an expert for long enough for 
these transient effects to die out.
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theoretical results

• At iteration 𝑛 listen to expert 𝑒 𝑛 for 𝑇𝑛 time 
steps.

• A new regret decomposition identity:
𝔼 𝑟 𝑛

≤ 

𝑒≠𝑒∗

𝔼 𝑇𝑒 𝑛 Δ𝑒 +
𝐶𝑒

𝑇0 1 − 𝛼𝑒
+

𝐶∗
1 − 𝛼∗



𝑘=0

𝑛−1
1

𝑇𝑘
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theoretical results

• At iteration 𝑛 listen to expert 𝑒 𝑛 for 𝑇𝑛 time 
steps.

• Using the upper confidence bound algorithm, with 
𝑇𝑛 = ⌊𝑇0 + 𝑐𝑛⌋:
𝔼 𝑟 𝑛

≤ 

𝑒≠𝑒∗

32log(𝑛)

Δ𝑒 −
2𝐾𝑒
𝑇𝑛

2 + 1 +
𝜋2

3
Δ𝑒 +

𝐾𝑒
𝑇0

+
𝐾∗
𝑐
log

𝑇0 + 𝑐𝑛 − 𝑐

𝑇0
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simulation results

• Initially…
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simulation results

• After 1250 iterations…
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• Extension of Experts MAB to incentivizing risk-
sensitive agent: 

28

From Experts to Incentives

• NY Taxi data from 2010-
2014 (~30k drivers)

• Derive a MDP model of 
taxi drivers via inverse 
(risk-sensitive) RL

• Learned MDP model is 
used to simulate drivers 
and we design reward 
functions for the 
principal 

• e.g., incentives to visit 
areas with high-demand 
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data markets and services
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$

$

$

• In our recent work, we 

model the data market:

– users exchange their data 

in exchange for services 

and incentives

– data buyers balance their 

statistical estimation goals 

with the cost of providing 

incentives 

– multiple data buyers may 

compete

Joint work with Tyler Westenbroek.
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model

• Strategic data sources are effort-averse.

– They need to be incentivized to provide a certain quality 
of data.

• Data is non-rivalrous.

• Multiple data buyers want data sources to exert 
sufficient effort, but don’t want to personally pay 
for it.

– The total incentives must justify the effort exerted.

– The individual incentive from data buyer 𝑗 must 
incentivize sharing data with 𝑗.
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data markets summary

• We developed an game-theoretic model to 
account for strategic data sources, reproducibility 
of data, quality of statistical estimation, and 
competition between buyers.
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$

• In contrast to the single-

buyer case, when we 

introduce competition

between firms, many of 

the desiderata of our 

incentive schemes are 

not preserved.



Multi-sided Markets: Matching & Learning via Bandits

• Platform based firms aim to match supply to demand 

• Given unknown supply and demand characteristics, we are combining machine 
learning approaches for segregating (clustering) each side of the market and 
matching clusters

• e.g., drivers and passengers with similar ratings is a heuristic for matching, but 
how does this extend when there are multiple objectives such as distance, 
hours worked, other in-place incentives, etc.
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The Digital Transformation & New Directions
• New research directions on new market structures formed by pervasive, 

disruptive technologies that serve as the impetus for the digital 
transformation

• These new directions grew out of the methodologies and approaches 
created by FORCES 
– how learning can be done when the data is generated by strategic human 

agents operating in unstructured, uncertain environments
– how competition interacts with control and estimation of cyber-physical 

systems
– how agents and markets respond to uncertainty

36

digital competence

digital usage

digital transformation


